Skip to main content
Log in

Altered mRNA and lncRNA expression profiles in the striated muscle complex of anorectal malformation rats

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

Striated muscle complex (SMC) dysplasia has been confirmed to contribute to postoperative defecation dysfunction of patients with anorectal malformations (ARMs). To date, the potential molecular mechanisms of SMC dysplasia underlying the development of ARMs have not been clearly explained. This study examined the expression profiles of mRNAs and lncRNAs in the malformed SMC of ARM rats using RNA sequencing (RNA-seq).

Methods

A rat model of ARMs was established by the intragastric administration of 1% ethylene thiourea (ETU) on an embryonic day 10 (E10). The rats were subjected to euthanasia and the SMC samples were collected on E19. The expression of mRNAs and lncRNAs was analyzed by RNA-seq on the Illumina HiSeq2500 platform. qRT-PCR was used to confirm the results of RNA-seq.

Results

Compared with the levels in control rats, 1408 mRNAs and 472 lncRNAs were differentially expressed in the SMC of E19 ARM rats. GO and KEGG pathway analyses showed that the top enriched GO terms were mainly related to muscle development and the enriched pathways were associated with muscle and synaptic development. Protein–protein interaction network analysis was also performed using the STRING database. The network map revealed the interaction between the WNT3 protein and NTRK1, NTF4, MUSK, and BMP5 proteins. Finally, the qRT-PCR results further confirmed the RNA-seq data.

Conclusion

Our findings indicate the involvement of these dysregulated mRNAs and lncRNAs in the pathogenesis of SMC dysplasia in ARMs, providing a theoretical foundation for developing interventions to improve postoperative defecation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author upon reasonable request.

References

  1. Herman RS, Teitelbaum DH (2012) Anorectal malformations. Clin Perinatol 39(2):403–422. https://doi.org/10.1016/j.clp.2012.04.001

    Article  PubMed  Google Scholar 

  2. Pena A, Guardino K, Tovilla JM, Levitt MA, Rodriguez G, Torres R (1998) Bowel management for fecal incontinence in patients with anorectal malformations. J Pediatr Surg 33(1):133–137. https://doi.org/10.1016/s0022-3468(98)90380-3

    Article  CAS  PubMed  Google Scholar 

  3. Rintala RJ, Lindahl H (1995) Is normal bowel function possible after repair of intermediate and high anorectal malformations? J Pediatr Surg 30(3):491–494. https://doi.org/10.1016/0022-3468(95)90064-0

    Article  CAS  PubMed  Google Scholar 

  4. Bai Y, Yuan Z, Wang W, Zhao Y, Wang H (2000) Quality of life for children with fecal incontinence after surgically corrected anorectal malformation. J Pediatr Surg 35(3):462–464. https://doi.org/10.1016/s0022-3468(00)90215-x

    Article  CAS  PubMed  Google Scholar 

  5. Geng Y, Mi J, Gao H, Jia H, Wang W (2017) Spatiotemporal expression of Wnt3a during striated muscle complex development in rat embryos with ethylenethiourea-induced anorectal malformations. Mol Med Rep 15(4):1601–1606. https://doi.org/10.3892/mmr.2017.6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang SW, Bai YZ, Zhang SC, Wang DJ, Zhang T, Zhang D, Wang WL (2008) Embryonic development of the striated muscle complex in rats with anorectal malformations. J Pediatr Surg 43(8):1452–1458. https://doi.org/10.1016/j.jpedsurg.2008.02.059

    Article  PubMed  Google Scholar 

  7. Chen QJ, Jia HM, Zhang SW, Zhang SC, Bai YZ, Yuan ZW, Wang WL (2009) Apoptosis during the development of pelvic floor muscle in anorectal malformation rats. J Pediatr Surg 44(10):1884–1891. https://doi.org/10.1016/j.jpedsurg.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  8. Mi J, Chen D, Ren X, Jia H, Gao H, Wang W (2014) Spatiotemporal expression of Wnt5a during the development of the striated muscle complex in rats with anorectal malformations. Int J Clin Exp Pathol 7(5):1997–2005

    PubMed  PubMed Central  Google Scholar 

  9. Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, Zhao WK, Xu SJ, Fan LH, Zhang XJ, Feng C, Wang CQ, Zhao YF, Li PF (2015) APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6:6779. https://doi.org/10.1038/ncomms7779

    Article  CAS  PubMed  Google Scholar 

  10. Du Q, Yao DS, Wang YW, Cheng C (2020) Research Progress on lncRNA functions and mechanisms in pituitary Adenomas. Horm Metab Res 52(5):280–288. https://doi.org/10.1055/a-1142-8815

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Li K, Zhang X, Chen J, Li M, Liu L (2020) The novel long noncoding RNA lncRNA-Adi regulates adipogenesis. Stem Cells Transl Med. https://doi.org/10.1002/sctm.19-0438

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Chen M, Liu X, Zhang L, Ding X, Guo Y, Li X, Guo H (2020) A novel lncRNA, lnc403, involved in bovine skeletal muscle myogenesis by mediating KRAS/Myf6. Gene 751:144706

    Article  CAS  Google Scholar 

  13. Salvatori B, Biscarini S, Morlando M (2020) Non-coding RNAs in nervous system development and disease. Front Cell Dev Biol 8:273. https://doi.org/10.3389/fcell.2020.00273

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xiao H, Huang R, Chen L, Diao M, Li L (2018) Integrating lncRNAs and mRNAs expression profiles in terminal hindgut of fetal rats with anorectal malformations. Pediatr Surg Int 34(9):971–982. https://doi.org/10.1007/s00383-018-4311-8

    Article  PubMed  Google Scholar 

  15. von Maltzahn J, Bentzinger CF, Rudnicki MA (2011) Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol 14(2):186–191. https://doi.org/10.1038/ncb2404

    Article  CAS  Google Scholar 

  16. Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS (2012) Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 40(8):3329–3347. https://doi.org/10.1093/nar/gkr1232

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Yan F, Ma J, Zhang J, Liu L, Guan L, Zheng H, Li T, Liang D, Mu Y (2019) Ultrasound-targeted microbubble destruction-mediated co-delivery of Cxcl12 (Sdf-1alpha) and Bmp2 Genes for myocardial repair. J Biomed Nanotechnol 15(6):1299–1312. https://doi.org/10.1166/jbn.2019.2776

    Article  CAS  PubMed  Google Scholar 

  18. Akahori H, Karmali V, Polavarapu R, Lyle AN, Weiss D, Shin E, Husain A, Naqvi N, Van Dam R, Habib A, Choi CU, King AL, Pachura K, Taylor WR, Lefer DJ, Finn AV (2015) CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. Nat Commun 6:7792. https://doi.org/10.1038/ncomms8792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R (2004) The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32(Database issue):262–266. https://doi.org/10.1093/nar/gkh021

    Article  CAS  Google Scholar 

  20. Du J, Li M, Yuan Z, Guo M, Song J, Xie X, Chen Y (2016) A decision analysis model for KEGG pathway analysis. BMC Bioinform 17(1):407. https://doi.org/10.1186/s12859-016-1285-1

    Article  Google Scholar 

  21. Cozza A, Melissari E, Iacopetti P, Mariotti V, Tedde A, Nacmias B, Conte A, Sorbi S, Pellegrini S (2008) SNPs in neurotrophin system genes and Alzheimer's disease in an Italian population. J Alzheimers Dis 15(1):61–70. https://doi.org/10.3233/jad-2008-15105

    Article  CAS  PubMed  Google Scholar 

  22. Ginsberg SD, Malek-Ahmadi MH, Alldred MJ, Che S, Elarova I, Chen Y, Jeanneteau F, Kranz TM, Chao MV, Counts SE, Mufson EJ (2019) Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease. Hippocampus 29(5):422–439. https://doi.org/10.1002/hipo.22802

    Article  CAS  PubMed  Google Scholar 

  23. Shafiee G, Asgari Y, Soltani A, Larijani B, Heshmat R (2018) Identification of candidate genes and proteins in aging skeletal muscle (sarcopenia) using gene expression and structural analysis. PeerJ 6:e5239. https://doi.org/10.7717/peerj.5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ostos F, Alcantara Miranda P, Hernandez-Lain A, Dominguez-Gonzalez C (2020) Congenital Ophthalmoplegia and Late-Onset Limb Weakness Caused by MUSK Mutations. J Clin Neuromuscul Dis 21(4):222–224. https://doi.org/10.1097/CND.0000000000000277

    Article  PubMed  Google Scholar 

  25. Rodriguez Cruz PM, Cossins J, Cheung J, Maxwell S, Jayawant S, Herbst R, Waithe D, Kornev AP, Palace J, Beeson D (2020) Congenital myasthenic syndrome due to mutations in MUSK suggests that the level of MuSK phosphorylation is crucial for governing synaptic structure. Hum Mutat 41(3):619–631. https://doi.org/10.1002/humu.23949

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Gui Z, Han Y, Yang X, Wang Z, Zheng L, Zhang L, Wang D, Fan X, Su L (2020) Comprehensive analysis of dysregulated exosomal long non-coding RNA networks associated with arteriovenous malformations. Gene 738:144482

    Article  CAS  Google Scholar 

  27. Subhash S, Kalmbach N, Wegner F, Petri S, Glomb T, Dittrich-Breiholz O, Huang C, Bali KK, Kunz WS, Samii A, Bertalanffy H, Kanduri C, Kar S (2019) Transcriptome-wide profiling of cerebral cavernous malformations patients reveal important long noncoding RNA molecular signatures. Sci Rep 9(1):18203. https://doi.org/10.1038/s41598-019-54845-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang Y, Zhuang J, Lin Y, Wang X, Chen J, Han F (2019) Long noncoding RNA SNHG6 contributes to ventricular septal defect formation via negative regulation of miR-101 and activation of Wnt/beta-catenin pathway. Pharmazie 74(1):23–28. https://doi.org/10.1691/ph.2019.8736

    Article  CAS  PubMed  Google Scholar 

  29. De Lucia F, Dean C (2011) Long non-coding RNAs and chromatin regulation. Curr Opin Plant Biol 14(2):168–173. https://doi.org/10.1016/j.pbi.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  30. Sun D, Miao Y, Xu W, Shi W, Wang L, Chen T, Wen H, Wu H, Liu M (2020) Comprehensive analysis of competitive endogenous RNAs network reveals potential prognostic lncRNAs in gastric cancer. Heliyon 6(5):e03978. https://doi.org/10.1016/j.heliyon.2020.e03978

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

There is nothing to be acknowledged.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (No. 81270436).

Author information

Authors and Affiliations

Authors

Contributions

ZYY and WLW conceived and designed the study. ZYY, ZWY, YZB, HG, HMJ, DL, and ZHY performed the experiments, and collected and analyzed data. ZYY drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weilin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

All animal experiments were carried out strictly in accordance with international ethical guidelines and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The study was approved by the Ethics Committee of Shengjing Hospital of China Medical University (No. 2015PS213K).

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Yuan, Z., Bai, Y. et al. Altered mRNA and lncRNA expression profiles in the striated muscle complex of anorectal malformation rats. Pediatr Surg Int 36, 1287–1297 (2020). https://doi.org/10.1007/s00383-020-04741-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-020-04741-w

Keywords

Navigation