Skip to main content

Advertisement

Log in

Activation of the Wnt/β-catenin pathway is common in wilms tumor, but rarely through β-catenin mutation and APC promoter methylation

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

The Wnt/β-catenin pathway is known to be crucial for the regulation of embryogenesis and cell differentiation, and its constitutive activation is associated with a wide range of malignancies. There are two major principles for an activated Wnt/β-catenin pathway. The first is caused by the failure of the destruction complex, mainly due to the decreased expression of the tumor suppressor gene adenomatous polyposis coli (APC); the second is the mutation of the β-catenin (CTNNB1) protein itself. Wilms tumors (WTs) are also thought to be malignancies with a high rate of Wnt/β-catenin pathway activation. The aim of this study was to analyze a large cohort of WT for activated Wnt/β-catenin pathway.

Methods

The transcription of axis inhibition protein 2 (AXIN2) and APC was analyzed by real-time PCR. Expression was compared with those in healthy renal tissues as a control. Methylation status of the APC promoter was measured by pyrosequencing and correlated with APC expression. Finally, the mutations of CTNNB1 itself were detected by Sanger sequencing.

Results

The analysis was done in a cohort of 103 WTs, treated in our institution. There was a significant overexpression of AXIN2 in WTs (P < 0.0001), with 33 (32 %) tumors showing higher expression (median + 3× SD) than normal kidney tissue. In contrast, the expression of APC as well as its promoter methylation did not differ from control (P = 0.78; P = 0.82). Finally, there were only seven (6.8 %) mutations detectable in CTNNB1, and five out of seven were seen in WTs with AXIN2 overexpression.

Conclusion

The finding that AXIN2, one of the major Wnt target genes, is overexpressed in our cohort of WTs, is indicative for the activation of the Wnt/β-catenin pathway. However, neither the alteration of APC nor frequent CTNNB1 mutations were seen in our analyses. Therefore, other mechanisms might be responsible for the common activation of the Wnt/β-catenin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Breslow N et al (1988) Age distribution of Wilms’ tumor: report from the National Wilms’ Tumor Study. Cancer Res 48(6):1653–1657

    CAS  PubMed  Google Scholar 

  2. Breslow N et al (1993) Epidemiology of Wilms tumor. Med Pediatr Oncol 21(3):172–181

    Article  CAS  PubMed  Google Scholar 

  3. Metzger ML, Dome JS (2005) Current therapy for Wilms’ tumor. Oncologist 10(10):815–826

    Article  CAS  PubMed  Google Scholar 

  4. Li CM et al (2002) Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol 160(6):2181–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scott RH et al (2012) Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3(3):327–335

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rakheja D et al (2014) Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2:4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruteshouser EC, Robinson SM, Huff V (2008) Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47(6):461–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wittmann S et al (2008) New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer 47(5):386–395

    Article  CAS  PubMed  Google Scholar 

  9. Astuti D et al (2001) Germline SDHD mutation in familial phaeochromocytoma. Lancet 357(9263):1181–1182

    Article  CAS  PubMed  Google Scholar 

  10. Williams RD et al (2010) Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms’ tumor. Clin Cancer Res 16(7):2036–2045

    Article  CAS  PubMed  Google Scholar 

  11. Walz AL et al (2015) Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27(2):286–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torrezan GT et al (2014) Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun 5:4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wegert J et al (2015) Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27(2):298–311

    Article  CAS  PubMed  Google Scholar 

  14. Bjornsson HT et al (2007) Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst 99(16):1270–1273

    Article  CAS  PubMed  Google Scholar 

  15. Hubertus J et al (2011) Altered expression of imprinted genes in Wilms tumors. Oncol Rep 25(3):817–823

    Article  CAS  PubMed  Google Scholar 

  16. Zitzmann F et al (2014) Frequent hypermethylation of a CTCF binding site influences Wilms tumor 1 expression in Wilms tumors. Oncol Rep 31(4):1871–1876

    CAS  PubMed  Google Scholar 

  17. Hubertus J et al (2013) Selective methylation of CpGs at regulatory binding sites controls NNAT expression in Wilms tumors. PLoS One 8(6):e67605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cardoso LC et al (2013) WT1, WTX and CTNNB1 mutation analysis in 43 patients with sporadic Wilms’ tumor. Oncol Rep 29(1):315–320

    CAS  PubMed  Google Scholar 

  19. Perotti D et al (2013) Is Wilms tumor a candidate neoplasia for treatment with WNT/beta-catenin pathway modulators?—a report from the renal tumors biology-driven drug development workshop. Mol Cancer Ther 12(12):2619–2627

    Article  CAS  PubMed  Google Scholar 

  20. Stamos JL, Weis WI (2013) The beta-catenin destruction complex. Cold Spring Harb Perspect Biol 5(1):a007898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tai D et al (2015) Targeting the WNT signaling pathway in cancer therapeutics. Oncologist 20(10):1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valenta T, Lukas J, Korinek V (2003) HMG box transcription factor TCF-4’s interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells. Nucleic Acids Res 31(9):2369–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He TC et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  CAS  PubMed  Google Scholar 

  24. de Kraker J et al (2004) Reduction of postoperative chemotherapy in children with stage I intermediate-risk and anaplastic Wilms’ tumour (SIOP 93-01 trial): a randomised controlled trial. Lancet 364(9441):1229–1235

    Article  CAS  PubMed  Google Scholar 

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koch A et al (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59(2):269–273

    CAS  PubMed  Google Scholar 

  27. Esteller M et al (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60(16):4366–4371

    CAS  PubMed  Google Scholar 

  28. Sparks AB et al (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58(6):1130–1134

    CAS  PubMed  Google Scholar 

  29. Park WS et al (1999) Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res 59(17):4257–4260

    CAS  PubMed  Google Scholar 

  30. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5):a008052. doi:10.1101/cshperspect.a008052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aiden AP et al (2010) Wilms tumor chromatin profiles highlight stem cell properties and a renal developmental network. Cell Stem Cell 6(6):591–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125(21):4225–4234

    CAS  PubMed  Google Scholar 

  33. Koesters R et al (1999) Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res 59(16):3880–3882

    CAS  PubMed  Google Scholar 

  34. Bernkopf DB, Hadjihannas MV, Behrens J (2015) Negative-feedback regulation of the Wnt pathway by conductin/axin2 involves insensitivity to upstream signalling. J Cell Sci 128(1):33–39

    Article  CAS  PubMed  Google Scholar 

  35. Amit S et al (2002) Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16(9):1066–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barros BD et al (2012) Mutational spectrum of WTX, WT1, CTNNB1, APC and PLCG2 genes in Wilms tumor defined by massive parallel resequencing. BMC Proc 6(Suppl 6):P52. doi:10.1186/1753-6561-6-S6-P52

    Article  PubMed Central  Google Scholar 

  37. Wissmann C et al (2003) WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 201(2):204–212

    Article  CAS  PubMed  Google Scholar 

  38. Gumz ML et al (2007) Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin Cancer Res 13(16):4740–4749

    Article  CAS  PubMed  Google Scholar 

  39. Zirn B et al (2006) Target genes of the WNT/beta-catenin pathway in Wilms tumors. Genes Chromosomes Cancer 45(6):565–574

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Hubertus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweigert, A., Fischer, C., Mayr, D. et al. Activation of the Wnt/β-catenin pathway is common in wilms tumor, but rarely through β-catenin mutation and APC promoter methylation. Pediatr Surg Int 32, 1141–1146 (2016). https://doi.org/10.1007/s00383-016-3970-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-016-3970-6

Keywords

Navigation