Skip to main content

Advertisement

Log in

Abdominal wall regenerative medicine for a large defect using tissue engineering: an experimental study

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Treatment for a large abdominal wall defect remains challenging. The aim of this study was to optimize tissue engineering therapy of muscle constructs using a rat model.

Methods

Experimental abdominal wall defects were created in Wister rats. The animal model was divided into three groups: collagen sponge (CS), hybrid scaffold (HS) and hybrid scaffold containing bone marrow liquid (HSBM). Hybrid scaffolds comprised collagen sponge and poly L-lactide (PLLA) sheets. Abdominal wall defects were covered by three kinds of sheets. Thereafter, the bone marrow liquid was spread onto the sheets. Rats were killed at 4, 8, and 16 weeks. Pathological examinations were performed using hematoxylin–eosin and desmin antibody staining.

Results

The CS group showed abdominal hernia, whereas the HS and HSBM groups did not. Vascular formation was confirmed in all groups. Muscle tissue was recognized at the marginal area of the sheet only in the HSBM group.

Conclusion

The HS and HSBM groups show a greater intensity than the CS group. Muscle tissue regeneration is solely recognized in the HSBM group. Our experimental data suggest that the triad of scaffold, cell, and growth factor is fundamental for ideal biomaterials. The HSBM may be useful for reconstruction of abdominal wall defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ramirez OM, Ruas E, Dellon AL (1990) “Components separation” method for closure of abdominal-wall defects: an anatomic and clinical study. Plast Reconstr Surg 86:519–526

    Article  CAS  PubMed  Google Scholar 

  2. de Vries Reilingh TS, van Goor H, Rosman C et al (2003) “Components separation technique” for the repair of large abdominal wall hernias. J Am Coll Surg 196:32–37

    Article  PubMed  Google Scholar 

  3. Levi DM, Tzakis AG, Kato T et al (2003) Transplantation of the abdominal wall. Lancet 361:2173–2176. doi:10.1016/S0140-6736(03)13769-5

    Article  PubMed  Google Scholar 

  4. Siemionow M (2015) Vascularized composite allotransplantation: a new concept in musculoskeletal regeneration. J Mater Sci Mater Med 26:266. doi:10.1007/s10856-015-5601-5

    Article  PubMed  Google Scholar 

  5. Rice RD, Ayubi FS, Shaub ZJ et al (2009) Comparison of Surgisis®, AlloDerm®, and Vicryl Woven Mesh® grafts for abdominal wall defect repair in an animal model. Aesth Plast Surg 34:290–296. doi:10.1007/s00266-009-9449-2

    Article  Google Scholar 

  6. Porzionato A, Sfriso M, Pontini A et al (2015) Decellularized human skeletal muscle as biologic scaffold for reconstructive surgery. Int J Mol Sci 16:14808–14831. doi:10.3390/ijms160714808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  8. Butler DL, Juncosa-Melvin N, Boivin GP et al (2008) Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 26:1–9. doi:10.1002/jor.20456

    Article  PubMed  Google Scholar 

  9. Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213:66–72. doi:10.1111/j.1469-7580.2008.00878.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  11. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347. doi:10.1002/jcp.21200

    Article  CAS  PubMed  Google Scholar 

  12. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113:810–834. doi:10.1161/CIRCRESAHA.113.300219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seiler MJ, Aramant RB (2012) Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 31:661–687. doi:10.1016/j.preteyeres.2012.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lai JY, Chang PY, Lin JN (2003) Body wall repair using small intestinal submucosa seeded with cells. J Pediatr Surg 38:1752–1755. doi:10.1016/S0022-3468(03)00617-1

    Article  PubMed  Google Scholar 

  15. Nowacki M et al (2015) Blood vessel matrix seeded with cells: a better alternative for abdominal wall reconstruction-a long-term study. BioMed Res Int 2015:890613. doi:10.1155/2015/890613

    Article  PubMed  PubMed Central  Google Scholar 

  16. Inui A, Kokubu T, Makino T et al (2010) Potency of double-layered Poly L-lactic Acid scaffold in tissue engineering of tendon tissue. Int Orthop 34:1327–1332. doi:10.1007/s00264-009-0917-8

    Article  PubMed  Google Scholar 

  17. Zhang Z, Zhang T, Li J et al (2014) Preparation of poly(l-lactic acid)-modified polypropylene mesh and its antiadhesion in experimental abdominal wall defect repair. J Biomed Mater Res 102:12–21. doi:10.1002/jbm.b.32947

    Article  CAS  Google Scholar 

  18. Hashi CK, Derugin N, Janairo RRR et al (2010) Antithrombogenic modification of small-diameter microfibrous vascular grafts. Arterioscler Thromb Vasc Biol 30:1621–1627. doi:10.1161/ATVBAHA.110.208348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato Y, Oba T, Natori N, Danjo K (2010) Evaluation of additives required for periodontal disease formulation using basic fibroblast growth factor. Chem Pharm Bull 58:1582–1586. doi:10.1248/cpb.58.1582

    Article  CAS  PubMed  Google Scholar 

  20. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67. doi:10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yablonka-Reuveni Z (2011) The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 59:1041–1059. doi:10.1369/0022155411426780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute of Laboratory Animal Sciences, Kagoshima University (Frontier Science Research Center). We thank Mr. Brian Quinn for comments and help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ieiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuhigashi, M., Kaji, T., Nakame, K. et al. Abdominal wall regenerative medicine for a large defect using tissue engineering: an experimental study. Pediatr Surg Int 32, 959–965 (2016). https://doi.org/10.1007/s00383-016-3949-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-016-3949-3

Keywords

Navigation