Skip to main content

Advertisement

Log in

Reduction of peritoneal adhesions by sustained and local administration of epidermal growth factor

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Previous studies have shown epidermal growth factor (EGF) facilitate peritoneal membrane healing by augmenting cell adhesion and migration. The objective of this study was to show the effect of sustained and local administration of EGF on peritoneal adhesion. Fourty-two rats were divided into six groups: control 7 and 14, gelatin 7 and 14, and EGF 7 and 14. Adhesions were created by scraping the cecum with mesh gause followed by application of absolute alcohol and placement of silk suture in the parietal peritoneum. The anterior walls of the intestines were covered with 5 × 5 cm unloaded, and EGF loaded gelatin films in the gelatin and EGF groups, respectively. The rats were killed on days 7 and 14 to assess the adhesion occurring, and for biochemical examination. The mean adhesion grades of EGF groups were significantly lower than in the other groups (P < 0.008). The mean adenosine deaminase (ADA) measurements of EGF 7 group were lower than in the gelatin 7 and control 7 groups but the difference was not significant (P > 0.008). The mean ADA measurements in the 14 days groups were as follows: control 14 < EGF 14 < gelatin 14 groups. The mean ADA measurements between 14 days groups did not significantly differ from each other (P > 0.008). The mean hydroxyproline measurements did not differ among the groups (P > 0.008). EGF decreased intestinal adhesion in our study. EGF has important roles in DNA synthesis and cell proliferation. Further studies are required to determine the exact mechanism by which EGF lowers the efficiency of intestinal adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellis H (1997) The clinical significance of adhesions: focus on intestinal obstruction. Eur J Surg Suppl 577:5–9

    PubMed  Google Scholar 

  2. Holmdahl L, Risberg B, Beck DE, Burns JW, Chegini N, diZerega GS, Ellis H (1997) Adhesions: pathogenesis and prevention—panel discussion and summary. Eur J Surg Suppl 577:56–62

    PubMed  Google Scholar 

  3. Raftery AT (1981) Effect of peritoneal trauma on peritoneal fibrinolytic activity and intraperitoneal adhesion formation. An experimental study in the rat. Eur Surg Res 13:397–401

    PubMed  CAS  Google Scholar 

  4. diZerega GS (1997) Biochemical events in peritoneal tissue repair. Eur J Surg Suppl 577:10–16

    PubMed  Google Scholar 

  5. Holmdahl L (1999) Making and covering of surgical footprints. Lancet 353:1456–1457

    Article  PubMed  CAS  Google Scholar 

  6. Leavesley DI, Jodie MS, Faull RJ (1999) Epidermal growth factor modifies the expression and function of extracellular matrix adhesion receptors expressed by peritoneal mesothelial cells from patients on CAPD. Nephrol Dial Transplant 14:1208–1216

    Article  PubMed  CAS  Google Scholar 

  7. Faull RJ, Stanley JM, Fraser S, Power DA, Leavesley DI (2001) HB-EGF is produced in the peritoneal cavity and enhances mesothelial cell adhesion and migration. Kidney Int 59:614–624

    Article  PubMed  CAS  Google Scholar 

  8. Laı HS, Chen Y, Chang KJ, Chen WJ (2003) Effects of octreotide on epidermal growth factor receptor, tissue plasminogen activator, and plasminogen activator inhibitor during intraperitoneal adhesion formation. J Gastroenterol 38:555–560

    PubMed  Google Scholar 

  9. Ohan J, Gilbert MA, Brouland JP, Rougier JP, Trugnan G, Wassef M, Leseche G, Drouet L (1999) Phenotypic and functional characteristics of porcine peritoneal mesothelial cells. In Vitro Cell Dev Biol Anim 35:625–634

    Article  PubMed  CAS  Google Scholar 

  10. Murata P, Kase Y, Tokita Y, Takeda S, Sasaki H (2006) Intestinal ischemia/ reperfusion injury aggravates talc-induced adhesions in rats. J Surg Res J Surg Res 135:45–51

    CAS  Google Scholar 

  11. Ellis H (1962) The aetiology of post-operative abdominal adhesions. An experimental study. Br J Surg 50:10

    Article  PubMed  CAS  Google Scholar 

  12. Hierholzer C, Kalff JC, Audolfsson G, Billiar TR, Tweardy DJ, Bauer AJ (1999) Molecular and functional contractile sequelae of rat intestinal ischemia/reperfusion injury. Transplantation 68:1244–1254

    Article  PubMed  CAS  Google Scholar 

  13. El-assal ON, Besner GE (2004) Heparin-binding epidermal growth factor-like growth factor and intestinal ischemia-reperfusion injury. Semin Pediatr Surg 13:2–10

    Article  PubMed  Google Scholar 

  14. Uguralp S, Bay Karabulut A, Mizrak B, Kaymaz F, Kiziltay A, Hasirci N (2004) The effect of sustained and local administration of epidermal growth factor on improving bilateral testicular tissue after torsion. Urol Res 32:323–331

    Article  PubMed  CAS  Google Scholar 

  15. Ma DDF, Sylwestrowicz T, Janossy G, Hoffbrand AV (1983) The role of purine metabolic enzymes and terminal deoxynucleotidyl transferase in intrathymic T-cell differentiation. Immunol Today 4:65–67

    Article  CAS  Google Scholar 

  16. Nayak S, Nalabothu P, Sandiford S, Bhogadi V, Adogwa A (2006) Evaluation of wound healing activity of Allamanda cathartica. L. and Laurus nobilis. L. Extracts on rats. BMC Complement Altern Med 6:12

    Article  PubMed  Google Scholar 

  17. Hemadeh O, Chilukuri S, Bonet V, Hussein S, Chaudry UH (1993) Prevention of peritoneal adhesions by administration of sodium carboxymethyl cellulose and oral vitamin E. Surgery 114:907–910

    PubMed  CAS  Google Scholar 

  18. Nair SK, Bhat IK, Aurora AL (1974) Role of proteolytic enzymes in the prevention of post-operative intraperitoneal adhesions. Arch Surg 11:273–280

    Google Scholar 

  19. Ellis G, Goldberg DM (1970) A reduced nicotinamide adenine dinucleotide-linked kinetic assay for adenosine deaminase activity. J Lab Clin Med 76:507–517

    PubMed  CAS  Google Scholar 

  20. Reddy GK, Enwemeka CS (1996) A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29:225–229

    Article  PubMed  CAS  Google Scholar 

  21. Durgakeri PU, Kaska M (2006) Post-operative intraperitoneal adhesion prevention—the recent knowledge. Rozhl Chir 85:286–289

    PubMed  CAS  Google Scholar 

  22. Liakakos T, Thomas N, Fine PM, Dervenis C, Young RL (2001) Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Dig Surg 18:260–273

    Article  PubMed  CAS  Google Scholar 

  23. Ulubayram K, Cakar AN, Korkusuz P, Ertan C, Hasirci N (2001) EGF containing gelatin-based wound dressings. Biomaterials 22:1345–1356

    Article  PubMed  CAS  Google Scholar 

  24. Sakallioglu AE, Yagmurlu A, Dindar H, Hasirci N, Renda N, Deveci MS (2004) Sustained local application of low-dose epidermal growth factor on steroid-inhibited colonic would healing. J Pediatr Surg 39:591–595

    Article  PubMed  Google Scholar 

  25. Ulubayram K, Eroglu I, Hasirci N (2002) Gelatin microspheres and sponges for delivery of macromolecules. J Biomater Appl 16:227–241

    Article  PubMed  CAS  Google Scholar 

  26. Muvaffak A, Hasirci N (2002) Controlled release from glutaraldehyde crossliked gelatin microspheres. Technol Health Care 10:347

    Google Scholar 

  27. Muvaffak A, Gürhan I, Hasirci N (2004) Prolong cytotoxic effect colchicines released from biodegradable microspheres. J Biomed Mater Res B Appl Biomater 71:295–304

    Article  PubMed  Google Scholar 

  28. Juhl CO, Vinter-Jensen L, Jensen LS, Nexo E, Djurhuus JC, Dajani EZ (1994) Recombinant human epidermal growth factor acceerates healing of sclerotherapy-induced esophageal ulcers and prevents esophageal stricture formation in pigs. Dig Dis Sci 39:2671–2678

    Article  PubMed  CAS  Google Scholar 

  29. Al-Chalabi HA, Otubo JAM (1987) Value of a single intraperitoneal dose of heparin in prevention of adhesion formation: an experimental evaluation in rats. Int J Fertil 32:332–335

    PubMed  CAS  Google Scholar 

  30. Hirai K, Ashraf M (1998) Modulation of adenosine effects in attenuation of ischemia and reperfusion injury in rat heart. J Mol Cell Cardiol 30:1803–1815

    Article  PubMed  CAS  Google Scholar 

  31. Ullrich A, Schlessinger J (1990) Stres in caregivers. Cell 61:203–212

    Article  PubMed  CAS  Google Scholar 

  32. Downward J, Parker P, Waterfield MD (1984) Autophosphorylation sites on the epidermal growth factor receptor. Nature 311:483–485

    Article  PubMed  CAS  Google Scholar 

  33. Tebar F, Ramirez I, Soley M (1993) Epidermal growth factor modulates the lipolytic action of catecholamines in rat adipocytes. J Biol Chem 15:17199–17204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Uguralp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uguralp, S., Akin, M., Karabulut, A.B. et al. Reduction of peritoneal adhesions by sustained and local administration of epidermal growth factor. Pediatr Surg Int 24, 191–197 (2008). https://doi.org/10.1007/s00383-007-2059-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-007-2059-7

Keywords

Navigation