Skip to main content

Advertisement

Log in

Increased extreme warming events and the differences in the observed hydrothermal responses of the active layer to these events in China’s permafrost regions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Extreme climate events have exerted strong effects on permafrost environments over the past few decades. The occurrence of extreme warming events during the cold season can alter the hydrothermal dynamics of the active layer. Here, we used meteorological and observational soil hydrothermal data to investigate variations in extreme warming events and their impacts on the hydrothermal regimes of the active layer in three permafrost regions in China. The results indicated that the eight analyzed extreme warming indices showed statistically significant increasing trends with differing rates from 1962 to 2019. Prominent differences existed in the mean values and linear trend magnitudes not only among the three permafrost regions but also among the eight indices. Most recorded high-intensity extreme warming events occurred primarily in the past 15 years (2005–2019). The occurrence times of extreme events and the active layer freeze–thaw process codetermined the influential extents of the extreme events on the active layer hydrothermal conditions at the Tanggula permafrost Monitoring Site. Events that occurred from March to April could cause soil temperature to increase with a greater magnitude than that induced by events occurring from October to November. Different event types could also lead to distinct differences in their corresponding influential extents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahsan S, Bhat MS, Alam A, Farooq H, Ahmad Shiekh H (2021) Evaluating the impact of climate change on extreme temperature and precipitation events over the Kashmir Himalaya. Clim Dyn. https://doi.org/10.1007/s00382-021-05984-6

    Article  Google Scholar 

  • Atkinson DE, Brown R, Alt B, Agnew T, Bourgeois J, Burgess M, Duguay C, Henry G, Jeffers S, Koerner R, Lewkowicz AG, McCourt S, Melling H, Sharp M, Smith S, Walker A, Wilson K, Wolfe S, Woo M-K, Young KL (2006) Canadian cryospheric response to an anomalous warm summer: a synthesis of the climate change action fund project “the state of the arctic cryosphere during the extreme warm summer of 1998.” Atmos-Ocean 44:347–375

    Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kröger T, Lambiel C, Lanckman J-P, Luo D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel AB, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M, Lantuit H (2019) Permafrost is warming at a global scale. Nat Commun 10:264. https://doi.org/10.1038/s41467-018-08240-4

    Article  Google Scholar 

  • Bokhorst S, Tommervik H, Callaghan TV, Phoenix GK, Bjerke JW (2012) Vegetation recovery following extreme winter warming events in the sub-Arctic estimated using NDVI from remote sensing and handheld passive proximal sensors. Environ Exp Bot 81:18–25

    Google Scholar 

  • Burke EJ, Dankers R, Jones CD, Wiltshire AJ (2013) A retrospective analysis of pan Arctic permafrost using the JULES land surface model. Clim Dyn 41(3):1025–1038

    Google Scholar 

  • Chang X, Jin H, He R, Yang S, Yu S, Lv L, Guo D, Wang S, Kang X (2008) Advances in permafrost and cold regions environments studies in the Da Xing’ anling (Da Hinggan) Mountains, Northeastern China. J Glaciol Geocryol 30:176–182

    Google Scholar 

  • Chen W, Dong B (2021) Projected near-term changes in temperature extremes over China in the mid-twenty-frst century and underlying physical processes. Clim Dyn. https://doi.org/10.1007/s00382-020-05566-y

    Article  Google Scholar 

  • Chen S, Li X, Wu T, Xue K, Luo D, Wang X, Wu Q, Kang S, Zhou H, Wei D (2020) Soil thermal regime alteration under experimental warming in permafrost regions of the central Tibetan. Geoderma 372:114397. https://doi.org/10.1016/j.geoderma.2020.114397

    Article  Google Scholar 

  • Fragkoulidis G, Wirth V, Bossmann P, Fink AH (2018) Linking Northern Hemisphere temperature extremes to Rossby wave packets. Q J Roy Meteor Soc 144:553–566

    Google Scholar 

  • Grotjahn R, Black R, Leung R, Wehner MF, Barlow M, Bosilovich M, Gershunov A, Gutowski WJ Jr, Gyakum JR, Katz RW, Lee YY, Lim YK, Prabhat (2016) North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Clim Dyn 46:1151–1184

    Article  Google Scholar 

  • Guo D, Wang H (2017) Permafrost degradation and associated ground settlement estimation under 2 °C global warming. Clim Dyn 49:2569–2583

    Google Scholar 

  • Hansen BB, Isaksen K, Benestad RE, Kohler J, Pedersen ÅØ, Loe LE, Coulson SJ, Larsen JO, Varpe Ø (2014) Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environ Res Lett 9:114021. https://doi.org/10.1088/1748-9326/9/11/114021

    Article  Google Scholar 

  • He S, Wang H (2016) Linkage between the East Asian January temperature extremes and the preceding Arctic Oscillation. Int J Climatol 36:1026–1032

    Google Scholar 

  • Hillebrand E, Proietti T (2017) Phase changes and seasonal warming in early instrumental temperature records. J Climate 30(17):6795–6821

    Google Scholar 

  • Hu T, Sun Y (2019) Projected changes in extreme warm and cold temperatures in China from 1.5 to 5 °C global warming. Int J Climatol 40:3942–3953

    Google Scholar 

  • Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y (2019) Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 337:893–905

    Google Scholar 

  • Hu G, Zhao L, Zhu X, Wu X, Wu T, Li R, Xie C, Hao J (2020) Review of algorithms and parameterizations to determine unfrozen water content in frozen soil. Geoderma 368:114277. https://doi.org/10.1016/j.geoderma.2020.114277

    Article  Google Scholar 

  • Huang F, Di H, Hu B, Zhou X (2014) Decadal regime shift of arctic sea ice and corresponding changes of extreme low temperature. Clim Change Res Lett 3:39–45

    Google Scholar 

  • Isaksen K, Benestad RE, Harris C, Sollid JL (2007) Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys Res Lett 34:L17502. https://doi.org/10.1029/2007GL031002

    Article  Google Scholar 

  • Kenyon J, Hegerl GC (2008) Influence of modes of climate variability on global temperature extremes. J Climate 21:3872–3889

    Google Scholar 

  • Kim YH, Min SK, Zhang X, Zwiers F, Alexander LV, Donat MG, Tung Y (2016) Attribution of extreme temperature changes during 1951–2010. Clim Dyn 46(5–6):1769–1782

    Google Scholar 

  • Li X, Cheng GD, Jin HJ, Kang ES, Che T, Jin R, Wu LZ, Nan ZT, Wang J, Shen YP (2008) Cryospheric change in China. Global Planet Change 62:210–218

    Google Scholar 

  • Li R, Zhao L, Ding Y, Wu T, Xiao Y, Du E, Liu G, Qiao Y (2012) Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin Sci Bull 57:4609–4616

    Google Scholar 

  • Li X, Wu T, Zhu X, Jiang Y, Hu G, Hao J, Ni J, Li R, Qiao Y, Yang C, Ma W, Wen A, Ying X (2020) Improving the Noah-MP model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau. J Geophys Res Atmos. https://doi.org/10.1029/2020JD032588

    Article  Google Scholar 

  • Liu G, Zhao L, Li R, Wu T, Jiao K, Ping C (2017) Permafrost warming in the context of step-wise climate change in the Tien Shan Mountains, China. Permafrost Periglac Process 28:130–139

    Google Scholar 

  • Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan Mountains, Central Asia. Global Planet Change 56:311–327

    Google Scholar 

  • Marmy A, Salzmann N, Scherler M, Hauck C (2013) Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions. Environ Res Lett 8:035048. https://doi.org/10.1088/1748-9326/8/3/035048

    Article  Google Scholar 

  • NMIC (National Meteorological Information Center) (2012a) Assessment report of China’s Surface Precipitation 0.5°×0.5° gridded dataset (V2.0) (in Chinese). NMIC, Beijing

    Google Scholar 

  • NMIC (National Meteorological Information Center) (2012b) Assessment report of China’s surface air temperature 0.5°×0.5° gridded dataset (V2.0) (in Chinese). NMIC, Beijing

    Google Scholar 

  • Obu J, Westermann S, Bartsch A, Berdnikov N, Christiansen HH, Dashtseren A, Delaloye R, Elberling B, Etzelmüller B, Kholodov A, Khomutov A, Kääb A, Leibman MO, Lewkowicz AG, Panda SK, Romanovsky V, Way RG, Westergaard-Nielsen A, Wu T, Yamkhin J, Zou D (2019) Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sc Rev 193:299–316

    Google Scholar 

  • Ren G, Zhou Y (2014) Urbanization effect on trends of extreme temperature indices of National Stations over Mainland China, 1961–2008. J Clim 27:2340–2360

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389

    Google Scholar 

  • Shabbar A, Bonsal B (2003) An assessment of changes in winter cold and warm spells over Canada. Nat Hazards 29:173–188

    Google Scholar 

  • Song S, Bai J (2016) Increasing winter precipitation over arid central Asia under global warming. Atmos 7:139. https://doi.org/10.3390/atmos7100139

    Article  Google Scholar 

  • Spencer RG, Mann PJ, Dittmar T, Eglinton TI, McIntyre C, Holmes RM, Zimov N, Stubbins A (2015) Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett 42:2830–2835

    Google Scholar 

  • Stine A, Huybers P, Fung I (2009) Changes in the phase of the annual cycle of surface temperature. Nature 457(22):435–441

    Google Scholar 

  • Sun L, Zhao L, Li R, Yao J, Liu Y, Qiao Y, Jiao K (2014) Effects of precipitation on the permafrost ground surface energy fluxes. J Longdong Univ 25:41–46

    Google Scholar 

  • Sun Z, Zhao L, Hu G, Qiao Y, Du E, Zou D, Xie C (2020) Modeling permafrost changes on the Qinghai-Tibetan plateau from 1966 to 2100: a case study from two boreholes along the Qinghai-Tibet engineering corridor. Permafrost Periglac Process 31:156–171

    Google Scholar 

  • Tomczyk AM, Łupikasza EB, Kendzierski S (2019) Warm winter and cold summer spells in Spitsbergen and their circulation conditions. Pol Polar Res 40:339–359

    Google Scholar 

  • Vikhamar-Schuler D, Isaksen K, Haugen JE, Tommervik H, Luks B, Schuler TV, Bjerke JW (2016) Changes in winter warming events in the Nordic Arctic Region. J Climate 29:6223–6244

    Google Scholar 

  • Wang S, Zhang M, Sun M, Wang B, Li X (2013) Changes in precipitation extremes in alpine areas of the Chinese Tianshan Mountains, central Asia, 1961–2011. Quatern Int 311:97–107

    Google Scholar 

  • Wang T, Wu T, Wang P, Li R, Xie C, Zou D (2019) Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Sci Total Environ 650:661–670

    Google Scholar 

  • Wen Z, Niu F, Yu Q, Wang D, Feng W, Zheng J (2014) The role of rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of Qinghai-Tibetan plateau. Environ Earth Sci 71(3):1195–1204

    Google Scholar 

  • Wu Q, Zhang T (2010) Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res 115:D09107. https://doi.org/10.1029/2009JD012974

    Article  Google Scholar 

  • Wu T, Zhao L, Li R, Wang Q, Xie C, Pang Q (2013) Recent ground surface warming and its effects on permafrost on the central Qingha-Tibet Plateau. Int J Climatol 33:920–930

    Google Scholar 

  • Xu C, Hou M, Yan X, Zhang X (2020) Temporal variability of seasonal warming rates in China. Int J Climatol 41:1597–1607

    Google Scholar 

  • Yan Y, You Q, Wu F, Pepin N, Kang S (2020) Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Clim Dyn 55:2405–2419

    Google Scholar 

  • Yao J, Zhao L, Ding Y, Gu L, Qiao Y (2008) Surface energy budget in the Tanggula region on the Tibetan Plateau. J Glaciol Geocryol 30(1):119–124

    Google Scholar 

  • Yao S, Jiang D, Zhang Z (2020) Lagrangian simulations of moisture sources for Chinese Xinjiang precipitation during 1979–2018. Int J Climatol 33:1–17

    Google Scholar 

  • Yin H, Sun Y, Wan H, Zhang X, Lu C (2017) Detection of anthropogenic influence on the intensity of extreme temperatures in China. Int J Climatol 37:1229–1237

    Google Scholar 

  • You Q, Ren G, Fraedrich K, Kang S, Ren Y, Wang P (2013) Winter temperature extremes in China and their possible causes. Int J Climatol 33:1444–1455

    Google Scholar 

  • You Q, Wu F, Shen L, Pepin N, Jiang Z, Kang S (2020) Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C. Global Planet Change 192:103261. https://doi.org/10.1016/j.gloplacha.2020.103261

    Article  Google Scholar 

  • Zhang Z, Wu Q, Xun X, Wang B, Wang X (2018) Climate change and the distribution of frozen soil in 1980–2010 in northern northeast China. Quatern Int 467:230–241

    Google Scholar 

  • Zhang G, Nan Z, Wu X, Ji H, Zhao S (2019a) The role of winter warming in permafrost change over the Qinghai-Tibet Plateau. Geophys Res Lett 46:11261–11269

    Google Scholar 

  • Zhang Z, Wu Q, Xun X, Li Y (2019b) Spatial distribution and changes of Xing’an permafrost in China over the past three decades. Quatern Int 523:16–24

    Google Scholar 

  • Zhao L, Zou D, Hu G, Du E, Pang Q, Xiao Y, Li R, Sheng Y, Wu X, Sun Z, Wang L, Wang C, Ma L, Zhou H, Liu S (2020a) Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau. Permafrost Periglac Process 31:396–405

    Google Scholar 

  • Zhao S, Zhou T, Chen X (2020b) Consistency of extreme temperature changes in China under a historical half-degree warming increment across different reanalysis and observational datasets. Clim Dyn 54(3):2465–2479

    Google Scholar 

  • Zhu X, Wu T, Li R, Xie C, Hu G, Qin Y, Wang W, Hao J, Yang S, Nie J, Yang C (2017) Impacts of summer extreme precipitation events on the hydrothermal dynamics of the active layer in the Tanggula Permafrost region on the Qinghai-Tibetan Plateau. J Geophys Res Atmos 122:11549–11567

    Google Scholar 

  • Zhu X, Wu T, Zhao L, Yang C, Zhang H, Xie C, Li R, Wang W, Hu G, Ni J, Du Y, Yang S, Zhang Y, Hao J, Yang C, Qiao Y, Shi J (2019) Exploring the contribution of precipitation to water within the active layer during the thawing period in the permafrost regions of central Qinghai-Tibet Plateau by stable isotopic tracing. Sci Total Environ 661:630–644

    Google Scholar 

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11:2527–2542

    Google Scholar 

  • Zuo Z, Zhang R, Huang Y, Xiao D, Guo D (2015) Extreme cold and warm events over China in wintertime. Int J Climatol 35:3568–3581

    Google Scholar 

Download references

Acknowledgements

We acknowledge the funding supports from the National Natural Science Foundations of China (42001071; 41771076; 41690142; 41961144021), and the West Light Foundation of The Chinese Academy of Sciences. The data that support the findings of this study are available from the corresponding author upon request (Tonghua Wu, thuawu@lzb.ac.cn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghua Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wu, T., Ni, J. et al. Increased extreme warming events and the differences in the observed hydrothermal responses of the active layer to these events in China’s permafrost regions. Clim Dyn 59, 785–804 (2022). https://doi.org/10.1007/s00382-022-06155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06155-x

Keywords

Navigation