Skip to main content

Advertisement

Log in

The April 2010 North African heatwave: when the water vapor greenhouse effect drives nighttime temperatures

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

North Africa experienced a severe heatwave in April 2010 with daily maximum temperatures (\(T_{max}\)) frequently exceeding \(40\,^{\circ }\mathrm{C}\) and daily minimum temperatures (\(T_{min}\)) over \(27\,^{\circ }\mathrm{C}\) for more than five consecutive days in extended Saharan and Sahelian areas. Observations show that areas and periods affected by the heatwave correspond to strong positive anomalies of surface incoming longwave fluxes (\(LW_{in}\)) and negative anomalies of incoming shortwave fluxes (\(SW_{in}\)). The latter are explained by clouds in the Sahara, and by both clouds and dust loadings in the Sahel. However, the strong positive anomalies of \(LW_{in}\) are hardly related to cloud or aerosol radiative effects. An analysis based on climate-model simulations (CNRM-AM) complemented by a specially-designed conceptual soil-atmospheric surface layer model (SARAWI) shows that this positive anomaly of \(LW_{in}\) is mainly due to a water vapor greenhouse effect. SARAWI, which represents the two processes driving temperatures, namely turbulence and longwave radiative transfer between the soil and the atmospheric surface layer, points to the crucial impact of synoptic low-level advection of water vapor on \(T_{min}\). By increasing the atmospheric infrared emissivity, the advected water vapor dramatically increases the nocturnal radiative warming of the soil surface, then in turn reducing the nocturnal cooling of the atmospheric surface layer, which remains warm throughout the night. Over Western Sahel, this advection is related to an early northward incursion of the monsoon flow. Over Sahara, the anomalously high precipitable water is due to a tropical plume event. Both observations and simulations support this major influence of the low-level water vapor radiative effect on \(T_{min}\) during this spring heatwave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Balkanski Y, Schulz M, Claquin T, Guibert S (2007) Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and aeronet data. Atmos Chem Phys 7(1):81–95

    Article  Google Scholar 

  • Barbier J, Guichard F, Bouniol D, Couvreux F, Roehrig R (2018) Detection of intraseasonal large-scale heat waves: characteristics and historical trends during the Sahelian spring. J Clim 31(1):61–80

    Article  Google Scholar 

  • Basart S, Pérez García-Pando C, Cuevas E, Baldasano Recio JM, Gobbi P (2009) Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun aeronet observations. Atmos Chem Phys 9(21):8265–8282

    Article  Google Scholar 

  • Baup F, Mougin E, De Rosnay P, Timouk F, Chênerie I (2007) Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sens Environ 109(4):473–481

    Article  Google Scholar 

  • Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31(2)

  • Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59(8):217–223

    Article  Google Scholar 

  • Bouniol D, Couvreux F, Kamsu-Tamo P-H, Leplay M, Guichard F, Favot F, O’Connor EJ (2012) Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa. J Appl Meteorol Climatol 51(3):534–553

    Article  Google Scholar 

  • Brooks N, Legrand M (2000) Dust variability over Northern Africa and rainfall in the Sahel. In: Linking climate change to land surface change. Springer, Berlin, pp 1–25

    Google Scholar 

  • Champeaux J, Masson V, Chauvin F (2005) Ecoclimap: a global database of land surface parameters at 1 km resolution. Meteorol Appl 12(1):29–32

    Article  Google Scholar 

  • Coindreau O, Hourdin F, Haeffelin M, Mathieu A, Rio C (2007) Assessment of physical parameterizations using a global climate model with stretchable grid and nudging. Mon Weather Rev 135(4):1474–1489

    Article  Google Scholar 

  • Couvreux F, Guichard F, Bock O, Campistron B, Lafore J-P, Redelsperger J-L (2010) Synoptic variability of the monsoon flux over West Africa prior to the onset. Q J R Meteorol Soc 136(S1):159–173

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger J-L (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126(562):1–30

    Article  Google Scholar 

  • Decharme B, Martin E, Faroux S (2013) Reconciling soil thermal and hydrological lower boundary conditions in land surface models. J Geophys Res Atmos 118(14):7819–7834

    Article  Google Scholar 

  • Decharme B, Brun E, Boone A, Delire C, Le Moigne P, Morin S (2016) Impacts of snow and organic soils parameterization on Northern Eurasian soil temperature profiles simulated by the ISBA land surface model. Cryosphere 10(2):853–877

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Deme A, Gaye AT, Hourdin F (2017) Climate projections in West Africa: the obvious and the uncertain. In: Sultan B, R Lalou R, Sanni MA, Oumarou A, Soumaré MA (eds) Rural societies in the face of climatic and environmental changes in West Africa, IRD Editions. AN13: 9782709924245 and 9782709924269

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The arpege/ifs atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10(4–5):249–266

    Article  Google Scholar 

  • Diallo FB, Hourdin F, Rio C, Traore A-K, Mellul L, Guichard F, Kergoat L (2017) The surface energy budget computed at the grid-scale of a climate model challenged by station data in West Africa. J Adv Model Earth Syst 9(7):2710–2738

    Article  Google Scholar 

  • Doelling DR, Loeb NG, Keyes DF, Nordeen ML, Morstad D, Nguyen C, Wielicki BA, Young DF, Sun M (2013) Geostationary enhanced temporal interpolation for CERES flux products. J Atmos Ocean Technol 30(6):1072–1090

    Article  Google Scholar 

  • Evan AT, Flamant C, Lavaysse C, Kocha C, Saci A (2015) Water vapor-forced greenhouse warming over the Sahara Desert and the recent recovery from the Sahelian drought. J Clim 28(1):108–123

    Article  Google Scholar 

  • Faroux S, Kaptué Tchuenté A, Roujean J-L, Masson V, Martin E, Moigne PL (2013) ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci Model Dev 6(2):563–582

    Article  Google Scholar 

  • Fischer EM (2014) Climate science: autopsy of two mega-heatwaves. Nat Geosci 7(5):332–333

    Article  Google Scholar 

  • Fontaine B, Janicot S, Monerie P-A (2013) Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa. J Geophys Res Atmos 118(15):8536–8552

    Article  Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the earth’s atmosphere—a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fröhlich L, Knippertz P, Fink AH, Hohberger E (2013) An objective climatology of tropical plumes. J Clim 26(14):5044–5060

    Article  Google Scholar 

  • Fu Q, Liou K (1992) On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J Atmos Sci 49(22):2139–2156

    Article  Google Scholar 

  • Garcia-Carreras L, Marsham J, Parker D, Bain C, Milton S, Saci A, Salah-Ferroudj M, Ouchene B, Washington R (2013) The impact of convective cold pool outflows on model biases in the Sahara. Geophys Res Lett 40(8):1647–1652

    Article  Google Scholar 

  • Guérémy J (2011) A continuous buoyancy based convection scheme: one-and three-dimensional validation. Tellus A 63(4):687–706

    Article  Google Scholar 

  • Guichard F, Kergoat L, Mougin E, Timouk F, Baup F, Hiernaux P, Lavenu F (2009) Surface thermodynamics and radiative budget in the Sahelian Gourma: seasonal and diurnal cycles. J Hydrol 375(1):161–177

    Article  Google Scholar 

  • Guichard F, Kergoat L, Mougin E, Hourdin F (2012) The annual cycle of temperature in the Sahel and its climatic sensitivity. In: AGU Fall Meeting Abstracts, vol 1, p 1004

  • Guichard F, Kergoat L, Hourdin F, Léauthaud C, Barbier J, Mougin E, Diarra B (2017) Climate warming observed in the Sahel since 1950. In: Sultan B, Lalou R, Sanni MA, Oumarou A, Soumaré MA (eds) Rural societies in the face of climatic and environmental changes in West Africa. AN13: 9782709924245 and 9782709924269

  • Herrero J, Polo M (2012) Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions. Hydrol Earth Syst Sci 16(9):3139–3147

    Article  Google Scholar 

  • Honda Y, Kondo M, McGregor G, Kim H, Guo Y-L, Hijioka Y, Yoshikawa M, Oka K, Takano S, Hales S et al (2014) Heat-related mortality risk model for climate change impact projection. Environ Health Prev Med 19(1):56–63

    Article  Google Scholar 

  • Hourdin F, Gueye M, Diallo B, Dufresne J-L, Escribano J, Menut L, Marticoréna B, Siour G, Guichard F (2015) Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions. Atmos Chem Phys 15(12):6775–6788

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2014) Climate Change 2014—impacts adaptation and vulnerability: regional aspects. Cambridge University Press, Cambridge

  • Klose M, Shao Y, Karremann MK, Fink AH (2010) Sahel dust zone and synoptic background. Geophys Res Lett 37(9)

    Article  Google Scholar 

  • Knippertz P, Martin JE (2005) Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Q J R Meteorol Soc 131(610):2337–2365

    Article  Google Scholar 

  • Largeron Y, Staquet C, Chemel C (2010) Turbulent mixing in a katabatic wind under stable conditions. Meteorol Z 19(5):467–480

    Article  Google Scholar 

  • Leroux S, Bellon G, Roehrig R, Caian M, Klingaman NP, Lafore J-P, Musat I, Rio C, Tyteca S (2016) Inter-model comparison of subseasonal tropical variability in aquaplanet experiments: effect of a warm pool. J Adv Model Earth Syst

  • Lohou F, Kergoat L, Guichard F, Boone A, Cappelaere B, Cohard J-M, Demarty J, Galle S, Grippa M, Peugeot C et al (2014) Surface response to rain events throughout the West African monsoon. Atmos Chem Phys 14(8):3883–3898

    Article  Google Scholar 

  • Lopez P (2002) Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Q J R Meteorol Soc 128(579):229–257

    Article  Google Scholar 

  • Mahfouf J, Manzi A, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model arpege. Part I. Implementation and preliminary results. J Clim 8(8):2039–2057

    Article  Google Scholar 

  • Marsham JH, Parker DJ, Todd MC, Banks JR, Brindley HE, Garcia-Carreras L, Roberts AJ, Ryder CL (2016) The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low. Atmos Chem Phys 16(5):3563–3575

    Article  Google Scholar 

  • Martin G, Peyrillé P, Roehrig R, Rio C, Caian M, Bellon G, Codron F, Lafore J-P, Poan D, Idelkadi A (2017) Understanding the West African monsoon from the analysis of diabatic heating distributions as simulated by climate models. J Adv Model Earth Syst 9(1):239–270

    Article  Google Scholar 

  • Masson V, Champeaux J-L, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16(9):1261–1282

    Article  Google Scholar 

  • Masson V, Le Moigne P, Martin E, Faroux S, Alias A, Alkama R, Belamari S, Barbu A, Boone A, Bouyssel F et al (2013) The SURFEXv7. 2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6:929–960

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Michou M, Nabat P, Saint-Martin D (2015) Development and basic evaluation of a prognostic aerosol scheme (v1) in the CNRM climate model CNRM-CM6. Geosci Model Dev 8(3)

    Article  Google Scholar 

  • Miralles DG, Teuling AJ, Van Heerwaarden CC, de Arellano JV-G (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7(5):345–349

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102(D14):16663–16682

    Article  Google Scholar 

  • Moron V, Oueslati B, Pohl B, Rome S, Janicot S (2016) Trends of mean temperatures and warm extremes in Northern Tropical Africa (1961–2014) from observed and PPCA-reconstructed time series. J Geophys Res Atmos 121(10):5298–5319

    Article  Google Scholar 

  • Mougin E, Hiernaux P, Kergoat L, Grippa M, De Rosnay P, Timouk F, Le Dantec V, Demarez V, Lavenu F, Arjounin M et al (2009) The AMMA-CATCH Gourma observatory site in Mali: relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources. J Hydrol 375(1):14–33

    Article  Google Scholar 

  • Nabat P, Somot S, Mallet M, Chiapello I, Morcrette J, Solmon F, Szopa S, Dulac F, Collins W, Ghan S et al (2013) A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products. Atmos Meas Tech 6(5):1287

    Article  Google Scholar 

  • Noilhan J, Mahfouf J-F (1996) The isba land surface parameterisation scheme. Glob Planet Change 13(1–4):145–159

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3):536–549

    Article  Google Scholar 

  • Perkins SE (2015) A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmos Res 164:242–267

    Article  Google Scholar 

  • Piriou J-M, Redelsperger J-L, Geleyn J-F, Lafore J-P, Guichard F (2007) An approach for convective parameterization with memory: separating microphysics and transport in grid-scale equations. J Atmos Sci 64(11):4127–4139

    Article  Google Scholar 

  • Prata A (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122(533):1127–1151

    Article  Google Scholar 

  • Ramanathan V, Cess R, Harrison E, Minnis P, Barkstrom B et al (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243(4887):57

    Article  Google Scholar 

  • Ricard J, Royer J-F (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger J-L (2013) The present and future of the west african monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26(17):6471–6505

    Article  Google Scholar 

  • Rohde R, Muller R, Jacobsen R, Perlmutter S, Rosenfeld A, Wurtele J, Curry J, Wickhams C, Mosher S (2013) Berkeley earth temperature averaging process. Geoinf Geostat 1:2

    Google Scholar 

  • Rutan DA, Kato S, Doelling DR, Rose FG, Nguyen LT, Caldwell TE, Loeb NG (2015) Ceres synoptic product: methodology and validation of surface radiant flux. J Atmos Ocean Technol 32(6):1121–1143

    Article  Google Scholar 

  • Sane Y, Bonazzola M, Rio C, Chambon P, Fiolleau T, Musat I, Hourdin F, Roca R, Grandpeix J-Y, Diedhiou A (2012) An analysis of the diurnal cycle of precipitation over Dakar using local rain-gauge data and a general circulation model. Q J R Meteorol Soc 138(669):2182–2195

    Article  Google Scholar 

  • Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107(21):9552–9555

    Article  Google Scholar 

  • Stephens GL, Wild M, Stackhouse PWJ, L’Ecuyer T, Kato S, Henderson DS (2012) The global character of the flux of downward longwave radiation. J Clim 25(7):2329–2340

    Article  Google Scholar 

  • Sultan B, Gaetani M (2016) Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Front Plant Sci 7

  • Timouk F, Kergoat L, Mougin E, Lloyd C, Ceschia E, Cohard J-M, De Rosnay P, Hiernaux P, Demarez V, Taylor C (2009) Response of surface energy balance to water regime and vegetation development in a Sahelian landscape. J Hydrol 375(1):178–189

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M et al (2013) The CNRM-CM5. 1 Global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121

    Article  Google Scholar 

  • Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Louis Smith G, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868

    Article  Google Scholar 

  • Wielicki BA, Barkstrom BR, Baum BA, Charlock TP, Green RN, Kratz DP, Lee RB, Minnis P, Smith GL, Wong T et al (1998) Clouds and the earth’s radiant energy system (CERES): algorithm overview. IEEE Trans Geosci Remote Sens 36(4):1127–1141

    Article  Google Scholar 

  • Yasuda N (1988) Turbulent diffusivity and diurnal variations in the atmospheric boundary layer. Bound Layer Meteorol 43(3):209–221

    Article  Google Scholar 

  • Zschenderlein P, Fink AH, Pfahl S, Wernli H (2019) Processes determining heat waves across different European climates. Q J R Meteorol Soc

Download references

Acknowledgements

This work has been done in the framework of the ACASIS project from the French national research agency (ANR). The authors acknowledge support from ANR ACASIS, grant ANR-13-487 SENV-0007 and from the AMMA-2050 project (grant number NE/M020428/1). Authors also acknowledge NASA for the dissemination of the CERES satellite products through the website https://ceres.larc.nasa.gov/, the Berkeley Earth for their open global temperature database (berkeleyearth.org/), and the scientists and technicians who collected the AMMA-CATCH data in the Sahel. They also thank Mireille Tomasini for usefull discussions on heat budget analysis, and Clara Theeten for her careful proofreadings of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Largeron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Configuration of the SARAWI simulations and tuned coefficients

Appendix: Configuration of the SARAWI simulations and tuned coefficients

In the SARAWI simulations used in the present study, physiographic and physical parameters are statistically tuned using the monthly-average values resolved by CNRM-AM. We also differentiate nighttime and daytime conditions when the considered parameter physically depends on static stability. This leads to:

\(\epsilon _a\): Coefficients \(a_i\) of Eq. 9 are estimated using longwave fluxes simulated by CNRM-AM which are regressed with the atmospheric specific humidity and air temperature. We can consider \(a_i\) coefficients obtained from a regression that include all points in North Africa, or alternatively use \(a_i\) coefficients which vary depending on the climate zone (Sahara, Sahel, Guinea). Both approaches lead to similar results (with a 5.3 W/m\(^2\) or \(1.3\%\) uncertainty on \(LW_{in}\) and a \(0.28\,^{\circ }\mathrm{C}\) uncertainty on \(T_{2m}\)). A regional fitting over North Africa gives \(a_1=0.667\), \(a_2=1.17\times 10^{-2}\) with hus in g/kg and \(a_3=4.55\times 10^{-4}\) with \(T_a\) in \(\,^{\circ }\mathrm{C}\).

\(\epsilon _s\): As for \(\epsilon _a\), we use CNRM-AM longwave fluxes to estimate \(\epsilon _s\) (which uses the ECOCLIMAP database, Champeaux et al. 2005; Faroux et al. 2013). It is almost constant and equal to \(0.9946\pm 0.0065\) over all North Africa in CNRM-AM. We take this mean-value as a constant for all continental grid points (this leads to a 0.11 W/m\(^2\) or 0.03% uncertainty on \(LW_{in}\) and a \(0.08\,^{\circ }\mathrm{C}\) uncertainty on \(T_{2m}\) as compared to the local value for each grid point).

\(C_s\): In order to correctly fit \(C_s\), we use Eq. (2) with the resolved fluxes and temperatures given by CNRM-AM, which takes its soil physiographic characteristics from the ECOCLIMAP database (Champeaux et al. 2005; Faroux et al. 2013). We average the different terms for each grid point separately over daytime and nighttime, from which we estimate two physiographic 2D fields \(C_s^{night}(lon,lat)\) and \(C_s^{day}(lon,lat)\).

\(h_{rad}\): We compute \(h_{rad}=c_{rad}.\delta z\) at each grid point by determining the value of \(h_{rad}\) that minimizes the root mean square error between the CNRM-AM values of \(\frac{\partial T_a}{\partial t}_{rlw}\) and the estimated values of that tendency according to Eq. (6). Results show that the value of \(c_{rad}\) is very homogeneous over all continental North Africa, so we choose to keep one constant value in SARAWI equal to the average over the continental area: \(h_{rad}=4.74.\delta z\). Physically, \(h_{rad}\) corresponds to a characteristic penetration depth of the upwelling longwave flux emitted by the surface, or alternatively to the depth of the layer radiatively warmed (or cooled) by the surface.

\(h_{turb}\): It is fixed equal to the height between the first and the second layers of the CNRM-AM simulation (35 m).

\(c_{t2m}\): The parameterization available in CNRM-AM (Mahfouf et al. 1995) is used here to prescribe \(c_{t2m}\), in order to facilitate comparison with the diagnosed \(T_{2m}\) in CNRM-AM simulation.

\(C_h\), \(K_s\), \(K_h\): In coupled soil-atmospheric models, the drag coefficient \(C_h\) usually depends on the static stability (see Noilhan and Mahfouf 1996 for the ISBA model used in CNRM-AM). Similarly, the turbulent diffusivity in the low layers also strongly varies with the static stability (e.g. Yasuda 1988; Largeron et al. 2010).

Here, we choose to use constant daytime values: \(C_h=4.10^{-3}\), \(K_s=1.6\times 10^{-4}\), \(K_h=0.94\)\(\mathrm{m}^2\,{\cdot}\, \mathrm{s}^{-1}\); and constant nighttime values about 8 times lower: \(C_h=5\times 10^{-4}\), \(K_s=2\times 10^{-5}\), \(K_h=0.08\)\(\mathrm{m}^2\cdot\mathrm{s}^{-1}\). Values are tuned to recover the heat fluxes given by the CNRM-AM simulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Largeron, Y., Guichard, F., Roehrig, R. et al. The April 2010 North African heatwave: when the water vapor greenhouse effect drives nighttime temperatures. Clim Dyn 54, 3879–3905 (2020). https://doi.org/10.1007/s00382-020-05204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05204-7

Keywords

Navigation