Skip to main content

Advertisement

Log in

Synoptic-scale characteristics and atmospheric controls of summer heat waves in China

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Summer heat waves with persistent extreme high temperatures have been occurring with increasing frequency in recent decades. These extreme events have disastrous consequences for human health, economies, and ecosystems. In this study, we examine three summers with intense and protracted heat waves: the summers of 2003, 2006, and 2013, with high temperatures located mainly in southeastern, southwestern, and eastern China, respectively. The synoptic-scale characteristics of these heat waves and associated atmospheric circulation anomalies are investigated. In the early heat wave episode of 2003, a heat center was located in the southeast coastal provinces during the first 20 days of July. The maximum southward displacement of the East Asian jet stream (EAJS) induced anticyclonic anomalies to the south, associated with southwestward intensification of the western North Pacific subtropical high (WNPSH), and extreme high temperatures were found only to the south of the Yangtze River. In the later episode, a poleward displacement of the EAJS and an enhanced WNPSH over the midlatitudes of eastern China resulted in a “heat dome” over the region, and the heat wave extended northward to cover a larger area of eastern China. The coupling between the westward-enhanced WNPSH and poleward-displaced EAJS was found in the East China heat wave of 2013 as well. But the area of high temperatures reached far to the north in August 2013, with below-normal temperatures located in a small region of South China. In the 2006 southwestern drought and heat wave, extreme poleward displacement of the EAJS, associated with extraordinary westward extension of the WNSPH, resulted in further blocking of the moisture supply from the southwest monsoon. Large-scale moisture deficiencies, dry conditions, and downslope winds were common features of all investigated heat wave episodes. But in 2006, low-level heat lows associated with a well-mixed layer due to intensive daytime heating and atmospheric turbulence were emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo R, Garcia-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Article  Google Scholar 

  • Chan JCL, Zhou W (2005) PDO, ENSO and the early summer monsoon rainfall over South China. Geophys Res Lett 32:L08810. doi:10.1029/2004GRL022015

    Google Scholar 

  • Chen HP, Sun JQ, Chen XL, Zhou W (2012) CGCM projections of heavy rainfall events in China. Int J Climatol 32:441–450

    Article  Google Scholar 

  • Chen W, Feng J, Wu R (2013) Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Clim 26:622–635

    Article  Google Scholar 

  • Christidis N, Jones GS, Stott PA (2015) Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat Clim Change 5:46–50

    Article  Google Scholar 

  • Dell-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275

    Article  Google Scholar 

  • Diaz HF, Murnane RJ (2008) Climate Extremes and Society. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ding Y, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142

    Article  Google Scholar 

  • Ding T, Qian WH (2011) Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv Atmos Sci 28:322–337

    Article  Google Scholar 

  • Ding T, Qian W, Yan Z (2009) Changes in hot days and heat waves in China during 1961–2007. Int J Climatol 30(10):1452–1462

    Google Scholar 

  • Donat MG, Alexander LV, Yang H et al (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos. doi:10.1002/jgrd.50150

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Feng J, Chen W, Tam CY, Zhou W (2011) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol 31:2091–2101

    Article  Google Scholar 

  • Feudale L, Shukla J (2007) Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophys Res Lett 34:L03811. doi:10.1029/2006GL027991

    Article  Google Scholar 

  • Fischer EM (2014) Autopsy of two mega-heatwaves. Nat Geosci 7:332–333

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007a) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007b) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Clim 20:5081–5099

    Article  Google Scholar 

  • Gong D, Pan Y, Wang J (2004) Changes in extreme daily mean temperatures in summer in eastern China during 1955–2000. Theor Appl Climatol 77:25–37

    Article  Google Scholar 

  • Hart RE, Grumm RH (2001) Using normalized climatological anomalies to rank synoptic-scale events objectively. Mon Weather Rev 129:2426–2442

    Article  Google Scholar 

  • Hu KM, Huang G, Qu X, Huang RH (2012) The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer. Adv Atmos Sci 29(1):91–100. doi:10.1007/s00376-011-0209-2

    Article  Google Scholar 

  • Hu K, Huang G, Wu R (2013) A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River Valley since the late 1980s. J Clim 26:2205–2221

    Article  Google Scholar 

  • Huth R, Kysely J, Pokorna L (2000) A GCM simulation of heat waves, dry spells, and their relationships to circulation. Clim Change 46:29–60

    Article  Google Scholar 

  • Imada Y, Shiogama H, Watanabe M et al (2014) The contribution of anthropogenic forcing to the Japanese heat wave 2013 [in “explaining extremes of 2013 from a climate perspective”]. Bull Am Meteorol Soc 95:S52–S54

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Ito H, Johnson NC, Xie SP (2013) Subseasonal and interannual temperature variability in relation to extreme temperature occurrence over East Asia. J Clim 26:9026–9042

    Article  Google Scholar 

  • Jones P, Horton E, Folland C, Hulme M, Parker D, Basnett T (1999) The use of indices to identify changes in climatic extremes. Clim Change 42:131–149

    Article  Google Scholar 

  • Jung T, Ferranti L, Tompkins AM (2006) Response of the summer of 2003 mediterranean SST anomalies over Europe and Africa. J Clim 19:5439–5454

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karl TR, Knight RW (1997) The 1995 Chicago heat wave, how likely is a recurrence? Bull Am Meteorol Soc 78:1107–1119

    Article  Google Scholar 

  • Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes. Clim Change 42:3–7

    Article  Google Scholar 

  • Kosaka Y, Xie SP, Lau NC, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Natl Acad Sci. doi:10.1073/pnas.1215582110

    Google Scholar 

  • Lau NC, Nath MJ (2006) ENSO modulation of the interannual and intraseasonal variability of the East Asian Monsoon: a model study. J Clim 19(18):4508–4530

    Article  Google Scholar 

  • Lau NC, Nath MJ (2012) A model study of heat waves over North America: meteorological aspects and projections for the 21st century. J Clim 25:4761–4784

    Article  Google Scholar 

  • Lau NC, Leetma A, Nath MJ, Wang HL (2005) Influences of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J Clim. doi:10.1175/JCLI3445.1

    Google Scholar 

  • Li XZ, Zhou W (2012) Quasi-4-year coupling between El Niño-Southern oscillation and water vapor transport over East Asia-WNP. J Clim 25:5879–5891. doi:10.1175/JCLI-D-11-00433.1

    Article  Google Scholar 

  • Li XZ, Wen ZP, Zhou W (2011) Long-term change in summer water vapor transport over South China in recent decades. J Meteorol Soc Japan 89A:271–282

    Article  Google Scholar 

  • Li XZ, Zhou W, Li CY, Song J (2013) Comparison of the annual cycles of moisture supply over southwest and southeast China. J Clim 26:10139–10158

    Article  Google Scholar 

  • Lin Z, Lu R (2005) Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv Atmos Sci 22:199–211

    Article  Google Scholar 

  • Lin Z, Lu R, Zhou W (2009) Change in early-summer meridional teleconnection over the western North Pacific and East Asia around the late 1970s. Int J Climatol. doi:10.1002/joc.2038

    Google Scholar 

  • Liu B, Wu G, Mao J, He J (2013) Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J Clim 26:2976–2991

    Article  Google Scholar 

  • Lorenz R, Davin EL, Lawrence DM, Stockli R, Seneviratne SI (2013) How important is vegetation phenology for European climate and heat waves? J Clim 26:10077–10100

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  Google Scholar 

  • Meehl GA, Karl T, Easterling DR et al (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81:413–416

    Article  Google Scholar 

  • Miralles DG, Teuling AJ, van Heerwaarden CC, de Arellano JV-G (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7:345–349

    Article  Google Scholar 

  • Palecki MA, Changnon SA, Kunkel KE (2001) The nature and impacts of the July 1999 heat wave in the Midwestern United States: learning from the lessons of 1995. Bull Am Meteorol Soc 82:1353–1367

    Article  Google Scholar 

  • Park JY, Jhun JG, Yim SY, Kim WM (2010) Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/El Niño-Southern oscillation connections. J Geophys Res 115:D21129. doi:10.1029/2009JD013642

    Article  Google Scholar 

  • Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26:4500–4517

    Article  Google Scholar 

  • Poumadere M, Mays C, LeMer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25:1483–1494

    Article  Google Scholar 

  • Qian W, Lin X (2004) Regional trends in recent temperature indices in China. Clim Res 27:119–134

    Article  Google Scholar 

  • Qian C, Yan ZW, Wu Z, Fu CB, Tu K (2011) Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China. Adv Atmos Sci 28(2):297–309

    Article  Google Scholar 

  • Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40:762–775

    Article  Google Scholar 

  • Schar C, Jendritzky G (2004) Climate change: hot news from summer 2003. Nature 432:559–560

    Article  Google Scholar 

  • Schar C, Vidale PL, Luthi D et al (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  • Schubert SD, Wang H, Koster RD, Suarez MJ (2014) Northern Eurasian heat waves and droughts. J Clim. doi:10.1175/JCLI-D-13-00360.1

    Google Scholar 

  • Stott PA (2003) Attribution of regional scale temperature changes to anthropogenic and natural causes. Geophys Res Lett. doi:10.1029/2003GL017324

    Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heat wave of 2003. Nature 432:610–614

    Article  Google Scholar 

  • Stott PA, Jones GS, Christidis N, Zwiers FW, Hegerl GC, Shiogama H (2011) Single-step attribution of increasing probability of very warm regional temperatures to human influence. Atmos Sci Lett 12:220–227. doi:10.1002/asl315

    Article  Google Scholar 

  • Su BD, Jiang T, Jin WB (2006) Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor Appl Climatol 83(1–4):139–151

    Article  Google Scholar 

  • Sun B, Wang HJ (2013) Water vapor transport paths and accumulation during widespread snowfall events in northeastern China. J Clim 26:4550–4566

    Article  Google Scholar 

  • Sun Y, Zhang X, Zwiers FW et al (2014) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change 4:1082–1085

    Article  Google Scholar 

  • Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ, Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol 51:193–200

    Article  Google Scholar 

  • Tao H, Fraedrich K, Menz C, Zhai J (2014) Trends in extreme temperature indices in the Poyang Lake Basin, China. Stoch Environ Res Risk Assess 28:1543–1553

    Article  Google Scholar 

  • Teng H, Branstator G, Wang H et al (2014) Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat Geosci. doi:10.1038/NGEO1988

    Google Scholar 

  • Vautard R, Yiou P, D’Andrea F et al (2007) Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys Res Lett 34:L07711. doi:10.1029/2006GL028001

    Article  Google Scholar 

  • Wang HJ, Chen HP (2012) Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon? J Geophys Res 117:D12109. doi:10.1029/2012JD017734

    Google Scholar 

  • Wang X, Li CY, Zhou W (2006) Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean. Int J Climatol 26:595–606

    Article  Google Scholar 

  • Wang B, Yang J, Zhou T, Wang B (2008) Interdecadal changes in the major modes of Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J. Climate 21:1771–1789

    Article  Google Scholar 

  • Wang X, Wang DX, Zhou W, Li CY (2012) Interdecadal modulation of the influence of La Niña events on mei-yu rainfall over the Yangtze River Valley. Adv Atmos Sci 29(1):157–168. doi:10.1007/s00376-011-1021-8

    Article  Google Scholar 

  • Wang W, Zhou W, Wang X, Fong SK, Leong KC (2013) Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J Geophys Res Atmos. doi:10.1002/jgrd.50633

    Google Scholar 

  • Wang W, Zhou W, Chen D (2014) Summer high temperature extremes in Southeast China: bonding with the El Niño-Southern oscillation and East Asian summer monsoon coupled system. J Clim 27:4122–4138. doi:10.1175/JCLI-D-13-00545.1

    Article  Google Scholar 

  • Wang W, Zhou W, Li Y, Wang X, Wang D (2015) Statistical modeling and CMIP5 simulations of hot spell changes in China. Clim Dyn 44:2859–2872. doi:10.1007/s00382-014-2287-1

    Article  Google Scholar 

  • Wei K, Chen W (2009) Climatology and trends of high temperature extremes across China in summer. Atmos Oceanic Sci Lett 2:153–158

    Article  Google Scholar 

  • Xie YB, Dai WJ (1959) The calculation for some cases of the moisture transport over Yangtze River basin. J. Appl. Meteor. Sci. 13:67–77

    Google Scholar 

  • Yan Z, Xia J, Qian C et al (2011) Changes in seasonal cycle and extremes in China during the period 1960–2008. Adv Atmos Sci 28:269–283

    Article  Google Scholar 

  • You Q, Kang S, Aguilar E et al (2010) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn. doi:10.07/s00382-009-0735-0

    Google Scholar 

  • Yuan F, Chen W, Zhou W (2012) Analysis of the role played by circulation in the persistent precipitation over south China in June 2010. Adv Atmos Sci 29:769–781

    Article  Google Scholar 

  • Zaitchik BF, Macalady AK, Boneau LR, Smith RB (2006) Europe’s 2003 heat wave: a satellite view of impacts and land-atmosphere feedbacks. Int J Climatol 26:743–769

    Article  Google Scholar 

  • Zhai P, Pan XH (2003) Trends in temperature extremes during 1951–1999 in China. Geophys Res Lett 30:1913–1916

    Article  Google Scholar 

  • Zhang P, Yang S, Kousky VE (2005) South Asian high and Asian-Pacific-American climate teleconnection. Adv Atmos Sci 22:915–923

    Article  Google Scholar 

  • Zhao P, Zhang X, Li Y, Chen J (2009) Remotely modulated tropical-North Pacific ocean-atmosphere interactions by the South Asian high. Atmos Res 94:45–60

    Article  Google Scholar 

  • Zhou W, Chan JCL (2005) Intraseasonal oscillations and the South China Sea summer monsoon onset. Int J Climatol 25:1585–1609

    Article  Google Scholar 

  • Zhou W, Chan JCL (2007) ENSO and South China Sea summer monsoon onset. Int J Climatol 27:157–167

    Article  Google Scholar 

  • Zhou TJ, Yu RC (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110:D08104. doi:10.1029/2004JD005413

    Google Scholar 

  • Zhou W, Li CY, Chan JCL (2006) The interdecadal variations of the summer monsoon rainfall over South China. Meteorol Atmos Phys 93:165–175. doi:10.1007/S00703-006-0184-9

    Article  Google Scholar 

  • Zhou T, Yu R, Zhang J et al (2009a) Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215

    Article  Google Scholar 

  • Zhou W, Chan JCL, Chen W, Liang J, Pinto JG, Shao YP (2009b) Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon Weather Rev 138:3978–3991

    Article  Google Scholar 

  • Zhou T, Ma S, Zou L (2014) Understanding a hot summer in central eastern China: summer 2013 in context of multimodel trend analysis [in “explaining extremes of 2013 from a climate perspective”]. Bull Am Meteorol Soc 95:S54–S57

    Google Scholar 

Download references

Acknowledgments

This study is supported by the CAS/SAFEA International Partnership Program for Creative Research Teams, the National Nature Science Foundation of China Grant 41375096 and 41175079, and the Strategic Priority Research Program of the Chinese Academy of Sciences Grant XDA11010403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhou, W., Li, X. et al. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim Dyn 46, 2923–2941 (2016). https://doi.org/10.1007/s00382-015-2741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2741-8

Keywords

Navigation