Skip to main content

Advertisement

Log in

Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Carbonaceous aerosols including black carbon and organic carbon over the Third Pole regions are simulated using a regional climate model (RegCM4.3) coupled with a chemistry–aerosol module. Results show that the model can simulate well the climatology of the Third Pole region in monsoon and non-monsoon seasons, but the model shows a cold bias and an overestimation of precipitation over the Himalayas and the northern Tibetan Plateau. The model also performs reasonably well in terms of aerosol optical depth and near surface aerosol concentration when compared with satellite datasets and in situ observations. BC wet deposition in monsoon seasons is more (less) than that in non-monsoon seasons in the southern (northwestern) parts of the Third Pole region. Westerly winds prevail throughout the year and transport carbonaceous particles from central Asia to the northern Tibetan Plateau. In the monsoon period, aerosols can cross the Himalayas and can be transported to high altitudes by the southwesterly winds over South Asia. Dry deposition shows a topography-controlled distribution, with low fluxes within and high fluxes outside of the Tibetan Plateau. Mixed carbonaceous aerosols produce positive shortwave radiative forcing in the atmosphere and negative forcing at the surface. Shortwave forcing is with less magnitude over the Third Pole region. Longwave radiation forcing is negative over the Pamir Plateau and positive over the Tibetan Plateau during monsoon season. In non-monsoon season, longwave radiative forcing is negative in the Himalayas and southern parts of the Tibetan Plateau. Aerosols increase surface air temperatures by 0.1–0.5 °C over the Tibetan Plateau and decrease temperatures in South Asia during the monsoon season. In the non-monsoon period, temperatures decrease by 0.1–0.5 °C over the southern Tibetan Plateau. Spatial changes in temperature are consistent with the distribution of longwave radiative forcing, which indicates that aerosols’ longwave radiative forcing probably plays an important role in the climatic impact of aerosols over the Third Pole region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arakawa A, Schubert WH (1974) Interaction of cumulus cloud ensemble with large-scale environment. Part I. J Atmos Sci 31:671–701

    Article  Google Scholar 

  • Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao XJ, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. doi:10.1029/2008GL036500

    Article  Google Scholar 

  • Barth MC, Kim SW, Wang C, Pickering KE, Ott LE, Stenchikov G, Leriche M, Cautenet S, Pinty JP, Barthe C, Mari C, Helsdon JH, Farley RD, Fridlind AM, Ackerman AS, Spiridonov V, Telenta B (2007) Cloud-scale model intercomparison of chemical constituent transport in deep convection. Atmos Chem Phys 7:4709–4731. doi:10.5194/acp-7-4709-2007

    Article  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos 118:5380–5552. doi:10.1002/jgrd.50171

    Article  Google Scholar 

  • Cao JJ, Xu BQ, He JQ, Liu XQ, Han YM, Wang GH, Zhu CS (2009) Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China. Atmos Environ 43:4444–4452

    Article  Google Scholar 

  • Cao JJ, Tie XX, Xu BQ, Zhao ZZ, Zhu CS, Li GH, Liu SX (2010) Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. J Atmos Chem 67:45–60. doi:10.1007/s10874-011-9202-5

    Article  Google Scholar 

  • Che HZ, Zhang XY, Li Y, Zhou ZJ, Qu JJ, Hao XJ (2009) Haze trends over the capital cities of 31 provinces in China, 1981–2005. Theor Appl Climatol 97:235–242. doi:10.1007/s00704-008-0059-8

    Article  Google Scholar 

  • Chin M, Rood RB, Lin SJ, Muller JF, Thomspon AM (2000a) Atmosphericsulfur cycle in the global model GOCART: model description and global properties. J Geophys Res 105:24671–24687

    Article  Google Scholar 

  • Chin M, Savoie D, Thornton D, Bandy A, Huebert B (2000b) Atmospheric sulfur cycle inthe global model GOCART: comparison with observations. J Geophys Res 105:24698–24712

    Google Scholar 

  • Chin M, Ginoux P, Kinne S, Holben BN, Duncan BN, Martin RV, Logan JA, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements. J Atmos Sci 59:461–483

    Article  Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cong ZY, Kang SC, Gao SP, Zhang Y, Li Q, Kawamura K (2013) Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environ Sci Technol 19:2579–2586

    Article  Google Scholar 

  • Cooke WF, Liousse C, Cachier H, Feichter J (1999) Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J Geophys Res 104(D18):22137–22162. doi:10.1029/1999JD900187

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) version 1 as coupled to the NCAR community climate model. NCAR technical note NCAR/TN-387 STR, Boulder, 72 pp

  • Ding YJ, Liu SY, Li J, Shanguan DH (2006) The retreat of glaciers in response to recent climate warming in western China. Ann Glaciol 43:97–105

    Article  Google Scholar 

  • Duncan BN, Martin RV, Staudt AC, Yevich R, Logan JA (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res 108(D2):4100. doi:10.1029/2002JD002378

    Article  Google Scholar 

  • Engling G, Zhang YN, Chan CY, Sang XF, Lin M, Ho KF, Li YS, Lin CY, Lee JJ (2010) Characterization and sources of aerosol particles over the Southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus B 63:117–128. doi:10.1111/j.1600-0889.2010.00512

    Article  Google Scholar 

  • Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res Atmos 112:D11202

    Article  Google Scholar 

  • Gao XJ et al (2006) Impacts of horizontal resolution and topography on the numerical simulation of East Asia precipitation. Chin J Atmos Sci 30(2):185–192 (in Chinese with English abstract)

    Google Scholar 

  • Gao XJ et al (2006) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorol Atmos Phys 100:73–86

    Article  Google Scholar 

  • Gao XJ, Shi Y, Zhang DF, Wu J, Giorgi F, Ji ZM, Wang YG (2012) Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res 52:213–226

    Article  Google Scholar 

  • Gao XJ et al (2013) Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos Ocean Sci Lett 6(5):381–386. doi:10.3878/j.issn.1674-2834.13.0029

    Article  Google Scholar 

  • Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauer DR (1994) A description of the fifth-generation Penn state/NCAR mesoscale model (MM5). Technical report. National Center for Atmospheric Research

  • Gu HH, Wang GL, Yu ZB, Mei R (2012) Assessing future climate changes and extreme indicators in east and South Asia using the RegCM4 regional climate model. Clim Chang 114:301–317. doi:10.1007/s10584-012-0411-y

    Article  Google Scholar 

  • Guenther A et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100(D5):8873–8892. doi:10.1029/94JD02950

    Article  Google Scholar 

  • IPCC (2007) Summary for policymaker of climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ji ZM, Kang SC (2013a) Projection of snow cover changes over China under RCP scenarios. Clim Dyn 41:589–600. doi:10.1007/s00382-012-1473-2

    Article  Google Scholar 

  • Ji ZM, Kang SC (2013b) Double nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J Atmos Sci 70:1278–1290. doi:10.1175/JAS-D-12-0155.1

    Article  Google Scholar 

  • Ji ZM, Kang SC, Zhang DF, Zhu CZ, Wu J, Xu Y (2011) Simulation of anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Clim Dyn 36:1633–1647

    Article  Google Scholar 

  • Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi:10.5194/acp-8-1195-2008

    Article  Google Scholar 

  • Kang SC et al (2007) Annual accumulation in the Mt Nyainqentanglha ice core, southern Tibetan plateau, China: relationships to atmospheric circulation over Asia. Arctic Antarct Alpine Res 39:663–670

    Article  Google Scholar 

  • Kang SC, Xu YW, You QL, Flügel W-A, Pepin N, Yao TD (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5:015101. doi:10.1088/748-9326/5/1/015101

    Article  Google Scholar 

  • Kaspari S, Schwikowski M, Gysel M, Flanner M, Kang SC, Hou SG, Mayewski P (2011) Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys Res Lett 38:L04703. doi:10.1029/2010GL046096

    Article  Google Scholar 

  • Kiehl JT (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical note, NCAR/TN-420 STR, 152 pp

  • Kopacz M, Mauzerall DL, Wang J, Leibensperger EM, Henze DK, Singh K (2011) Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos Chem Phys 11(6):2837–2852

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian monsoon anomalies induced by aerosol direct effects. Clim Dyn 26:855–864. doi:10.1007/s00382-006-0114-z

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in gauge—corrected, global precipitation. Int J Climatol 10(2):111–127

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41(1):11–21

    Article  Google Scholar 

  • Li J, Huang K, Wang QZ, Lin YF, Xue FM, Huang J, Fu SJ, Zhuang GS (2010) Characteristics and source of black carbon aerosol over Taklimakan Desert. Sci China Chem 53(5):1202–1209. doi:10.1007/s11426-010-0061-8

    Article  Google Scholar 

  • Liousse C, Penner J, Chuang C, Walton J, Eddleman H, Cachier H (1996) A global three-dimensional model study of carbonaceous aerosols. J Geophys Res 101(D14):19411–19432. doi:10.1029/95JD03426

    Article  Google Scholar 

  • Lu Z, Streets DG, Zhang Q, Wang S (2012) A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010. Geophys Res Lett 39:L01809. doi:10.1029/2011GL049903

    Google Scholar 

  • Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S, Sellegri K, Vuillermoz E, Verza GP, Villani P, Bonasoni P (2010) Aerosol mass and black carbon concentrations, a two year record at Nco-p (5079 m, Southern Himalayas). Atmos Chem Phys 10:8551–8562

    Article  Google Scholar 

  • Menon S et al (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  Google Scholar 

  • Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phys 10:4559–4571. doi:10.5194/acp-10-4559-2010

    Article  Google Scholar 

  • Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S et al (2008) Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos Chem Phys 8(5):1343–1352

    Article  Google Scholar 

  • Ming J, Xiao C, Cachier H, Qin D, Qin X, Li Z et al (2009) Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos Res 92(1):114–123

    Article  Google Scholar 

  • Ming J, Xiao CD, Sun JY, Kang SC, Bonasoni P (2010) Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J Environ Sci 22(11):1748–1756

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK (2012) Simulation of South Asianaerosols for regional climate studies. J Geophys Res 117:D04209. doi:10.1029/2011JD016711

    Google Scholar 

  • Ohara T et al (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444

    Article  Google Scholar 

  • Oleson KW, Niu GY, Yang ZL et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113(G1):G01021. doi:10.1029/2007jg000563

    Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409

    Article  Google Scholar 

  • Qian Y, Giorgi F (1999) Interactive coupling of regional climate and sulfate aerosol models over eastern Asia. J Geophys Res 104(D6):6477–6499. doi:10.1029/98JD02347

    Article  Google Scholar 

  • Qian Y, Flanner MG, Leung LR, Wang W (2011) Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos Chem Phys 11(5):1929–1948

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  Google Scholar 

  • Ramanathan V et al (2005) Atmospheric brown clouds: impact on South Asian climate and hydrologic cycle. Proc Natl Acad Sci 102:5326–5333. doi:10.1073/pnas.0500656102

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625

    Article  Google Scholar 

  • Salam A, Bauer H, Kassin K et al (2003) Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka–Bangladesh). Atmos Environ 37(2003):2517–2528

    Article  Google Scholar 

  • Schwalb A et al (2008) The top of the world as a climate sensor. Ger Res 30:4–7

    Article  Google Scholar 

  • Shen YP, Liang H (2004) High precipitation in glacial region of high mountains in high Asia: possible cause. J Glaciol Geocryol 26:806–809 (in Chinese)

    Google Scholar 

  • Singh T, Khillare PS, Shridhar V, Agarwal T (2008) Visibility impairing aerosols in the urban atmosphere of Delhi. Environ Monitor Assess 141(1–3):67–77. doi:10.1007/s10661-007-9879-8

    Article  Google Scholar 

  • Smith DJT, Harrision RM, Luhana L, Casimiro AP, Castro LM, Tariq MN, Hayat S, Quraishi T (1996) Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmos Environ 30:4031–4040

    Article  Google Scholar 

  • Solmon F, Giorgi F, Liousse C (2006) Aerosol modeling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58:51–72. doi:10.1111/j.1600-0889.2005.00155.x

    Article  Google Scholar 

  • Steiner A, Pal J, Rauscher S et al (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Streets DG, Yarber KF, Woo JH, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cycles 17(4):1099. doi:10.1029/2003GB002040

    Article  Google Scholar 

  • Tang J, Wen YP, Zhou LX, Qi DL, Zheng M, Trivett N, Wallgren E (1999) Observational study of black carbon in clean air area of western China. Q J Appl Meteorol 10(2):160–169 (in Chinese)

    Google Scholar 

  • Venkataraman C, Reddy CK, Josson S, Reddy MS (2002) Aerosol size and chemical characteristics and Mumbai, India, during the INDOEX-IEP (1999). Atmos Environ 36:1979–1991

    Article  Google Scholar 

  • Wang SH, Lin NH, Chou MD, Woo JH (2007) Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. J Geophys Res 112:D10222. doi:10.1029/2006JD007564

    Article  Google Scholar 

  • Wu J, Gao XJ (2013) A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys. doi:10.6038/cjg20130301

    Google Scholar 

  • Wu GX, Zhang YS (1998) Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea. Mon Weather Rev 126:913–927

    Article  Google Scholar 

  • Wu J, Gao XJ, Shi Y, Giorgi F (2011) Climate change simulation over Xinjiang region in 21st century by a high resolutionRCM. J Glaciol Geocryl 33:479–487 (in Chinese)

    Google Scholar 

  • Xia XA, Zong XM, Cong ZY, Chen HB, Kang SC, Wang PC (2011) Baseline continental aerosol over the central Tibetan plateau and a case study of aerosol transport from South Asia. Atmos Environ 45(39):7370–7378

    Article  Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N et al (2009a) Black soot and the survival of Tibetan glaciers. P Natl Acad Sci USA 106(52):22114–22118

    Article  Google Scholar 

  • Xu Y, Gao XJ, Giorgi F (2009b) Regional variability of climate change hot-spot in East Asia. Adv Atmos Sci 26(4):783–792

    Article  Google Scholar 

  • Xu Y, Gao XJ, Xu CH, Shi Y, Giorgi F (2009c) A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci 26(4):763–772

    Article  Google Scholar 

  • Yao TD (2010) Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chin Sci Bull 55:2071. doi:10.1007/s11434-010-4327-5

    Article  Google Scholar 

  • Yao TD, Thompson LG, Mosbrugger V, Zhang F, Ma YM, Luo TX, Xu BQ, Yang XX, Joswiak DR, Wang WC, Joswiak ME, Devkota LP, Tayal S, Jilani R, Fayziev R (2012) Third Pole Environment (TPE). Environ Dev 3:52–64

    Article  Google Scholar 

  • Yasunari TJ, Koster RD, Lau KM, Aoki Te, Sud YC, Yamazaki T, Motoyoshi H, Kodama Y (2011) Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model. J Geophys Res 116:D02210. doi:10.1029/2010JD014861

    Google Scholar 

  • Yasunari TJ, Tan Q, Lau KM, Bonasoni P, Marinoni A, Laj P, Ménégoz M, Takemura T, Chin M (2013) Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmos Environ 78:259–267

    Article  Google Scholar 

  • Yu M, Wang GL (2013) Impacts of bias correction of lateral boundary conditions on regional climate projections in West Africa. Clim Dyn. doi:10.1007/s00382-013-1853-2

    Google Scholar 

  • Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704

    Article  Google Scholar 

  • Zakey AS, Giorgi F, Bi X (2008) Modeling of sea salt in a regional climate model: fluxes and radiative forcing. J Geophys Res 113:D14221. doi:10.1029/2007JD009209

    Article  Google Scholar 

  • Zhang DF, Zakey AS, Gao XJ, Giorgi F, Solmon F (2009) Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos Chem Phys 9:1095–1110

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Nature Science Foundation of China (Grant No. 41301061, 41190081, 41121001), China Meteorological Administration Special Public Welfare Research Fund (GYHY201306019), the Academy of Finland (Decision number 268170), Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB 03030504) and Open Program (SKLCS 2012-03) from State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Kang, S., Cong, Z. et al. Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Clim Dyn 45, 2831–2846 (2015). https://doi.org/10.1007/s00382-015-2509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2509-1

Keywords

Navigation