Skip to main content
Log in

The dynamical structure of intense Mediterranean cyclones

Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989–2008 that have been identified and tracked using the output of a coupled ocean–atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones’ thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer’s role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Appenzeller C, Davies HC (1992) Structure of stratospheric intrusions into the troposphere. Nature 358:570–572

    Article  Google Scholar 

  • Bleck R, Mattocks C (1984) A preliminary analysis of the role of potential vorticity in Alpine lee cyclogenesis. Beitr Phys Atmos 57:357–368

    Google Scholar 

  • Browning KA (1990) Organization of clouds and precipitation in extra-tropical cyclones. In: Newton CW, Holopainen EO (eds) Extratropical cyclones: the Erik Palmen memorial volume. Am Meteorol Soc pp 129–153

  • Browning KA (1997) The dry intrusion perspective of extra-tropical cyclone development. Meteorol Appl 4:317–324. doi:10.1017/S1350482797000613

    Article  Google Scholar 

  • Buzzi A, D’Isidoro M, Davolio S (2003) A case-study of an orographic cyclone south of the Alps during the MAP SOP. Q J R Meteorol Soc 129:1795–1818. doi:10.1256/qj.02.112

    Article  Google Scholar 

  • Čampa J, Wernli H (2012) A PV perspective on the vertical structure of mature midlatitude cyclones in the northern hemisphere. J Atmos Sci 69:725–740. doi:10.1175/JAS-D-11-050.1

    Article  Google Scholar 

  • Campins J, Genovés A, Jansà A, Guijarro JA, Ramis C (2000) A catalogue and a classification of surface cyclones for the western Mediterranean. Int J Climatol 20:969–984. doi:10.1002/1097-0088(200007)20:9<969:AID-JOC519>3.0.CO;2-4

    Article  Google Scholar 

  • Campins J, Jansà A, Genovés A (2006) Three-dimensional structure of western Mediterranean cyclones. Int J Climatol 26:323–343. doi:10.1002/joc.1275

    Article  Google Scholar 

  • Campins J, Genovés A, Picornell MA, Jansà A (2011) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31:1596–1614. doi:10.1002/joc.2183

    Google Scholar 

  • Catto JL, Shaffrey LC, Hodges KI (2010) Can climate models capture the structure of extratropical cyclones? J Clim 23:1621–1635. doi:10.1175/2009JCLI3318.1

    Article  Google Scholar 

  • Chaboureau JP, Claud C (2006) Satellite-based climatology of Mediterranean cloud systems and their association with large-scale circulation. J Geophys Res 111:D01102. doi:10.1029/2005JD006460

    Article  Google Scholar 

  • Chaboureau JP, Pantillon F, Lambert D, Richard E, Claud C (2012) Tropical transition of a Mediterranean storm by jet crossing. Q J R Meteorol Soc 138:596–611. doi:10.1002/qj.960

    Article  Google Scholar 

  • Chang EKM, Song S (2006) The seasonal cycles in the distribution of precipitation around cyclones in the western north Pacific and Atlantic. J Atmos Sci 63:815–839. doi:10.1175/JAS3661.1

    Article  Google Scholar 

  • Claud C, Alhammoud B, Funatsu BM, Chaboureau JP (2010) Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations. Nat Hazards Earth Syst Sci 10:2199–2213. doi:10.5194/nhess-10-2199-2010

    Article  Google Scholar 

  • Davies HC, Schär C, Wernli H (1991) The palette of fronts and cyclones within a baroclinic wave development. J Atmos Sci 48:1666–1689

    Article  Google Scholar 

  • Davis CA, Emanuel KA (1991) Potential vorticity diagnostics of cyclogenesis. Mon Weather Rev 119:1929–1953. doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2

    Article  Google Scholar 

  • Drobinski P et al (2012) Model of the regional coupled earth system (MORCE): application to process and climate studies in vulnerable regions. Environ Model Softw 35: 1–18. doi:10.1016/j.envsoft.2012.01.017. ISSN 1364-8152

  • Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: a 10-year multidisciplinary program on the mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. doi:10.1175/BAMS-D-12-00242.1

  • Eckhardt S, Stohl A, Wernli H, James P, Forster C, Spichtinger N (2004) A 15-year climatology of warm conveyor belts. J Clim 17:218–237. doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2

    Article  Google Scholar 

  • Emanuel K (2005) Genesis and maintenance of “Mediterranean hurricanes”. Adv Geosci 2:217–220

    Article  Google Scholar 

  • Field PR, Wood R (2007) Precipitation and cloud structure in midlatitude cyclones. J Clim 20:233–254

    Article  Google Scholar 

  • Field PR, Bodas-Salcedo A, Brooks ME (2011) Using model analysis and satellite data to assess cloud and precipitation in midlatitude cyclones. Q J R Meteorol Soc 137:1501–1515. doi:10.1002/qj.858

    Article  Google Scholar 

  • Fita L, Romero R, Ramis C (2006) Intercomparison of intense cyclogenesis events over the Mediterranean basin based on baroclinic and diabatic influences. Adv Geosci 7:333–342. doi:10.5194/adgeo-7-333-2006

    Article  Google Scholar 

  • Fita L, Romero R, Luque A, Emanuel K, Ramis C (2007) Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat Hazards Earth Syst Sci 7:41–56. doi:10.5194/nhess-7-41-2007

    Article  Google Scholar 

  • Flaounas E, Drobinski P, Bastin S (2013) Dynamical dowscaling of IPSL-CM5 CMIP5 historical simulations over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis. Clim Dyn 40:2497–2513. doi:10.1007/s00382-012-1606-7

    Article  Google Scholar 

  • Flaounas E, Kotroni V, Lagouvardos K, Flaounas I (2014) CycloTRACK (v1.0) – tracking winter extratropical cyclones based on relative vorticity: sensitivity to data filtering and other relevant parameters. Geosci Model Dev 7:1841–1853. doi:10.5194/gmd-7-1841-2014

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Hanley J, Caballero R (2012) The role of large-scale atmospheric flow and Rossby wave breaking in the evolution of extreme windstorms over Europe. Geophys Res Lett 39:L21708. doi:10.1029/2012GL053408

    Article  Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology. Elsevier/Academic Press. ISBN 0-12-354015-1

  • Homar V, Ramis C, Alonso S (2002) A deep cyclone of African origin over the Western Mediterranean: diagnosis and numerical simulation. Ann Geophys 20:93–106

    Article  Google Scholar 

  • Homar V, Jansà A, Campins J, Genovés A, Ramis C (2007) Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones. Nat Hazards Earth Syst Sci 7:445–454. doi:10.5194/nhess-7-445-2007

    Article  Google Scholar 

  • Horvath K, Fita L, Romero R, Ivančan-Picek B (2006) A numerical study of the first phase of a deep Mediterranean cyclone: cyclogenesis in the lee of the Atlas Mountains. Meteorol Z 15:133–146

    Article  Google Scholar 

  • Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946. doi:10.1002/qj.49711147002

    Article  Google Scholar 

  • Jansa A, Genoves A, Garcia-Moya JA (2000) Western Mediterranean cyclones and heavy rain. Part 1: numerical experiment concerning the Piedmont flood case. Meteorol Appl 7:323–333. doi:10.1017/S1350482700001663

    Article  Google Scholar 

  • Kotroni V, Lagouvardos K, Defer E, Dietrich S, Porcù F, Medaglia CM, Demirtas M (2006) The Antalya 5 December 2002 storm: observations and model analysis. J Appl Meteorol Climatol 45:576–590. doi:10.1175/JAM2347.1

    Article  Google Scholar 

  • Kouroutzoglou J, Flocas HA, Keay K, Simmonds I, Hatzaki M (2011) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol 31:1785–1802. doi:10.1002/joc.2203

    Article  Google Scholar 

  • Kysely J, Picek J (2007) Probability estimates of heavy precipitation events in a flood- prone central-European region with enhanced influence of Mediterranean cyclones. Adv Geosci 12:43–50

    Article  Google Scholar 

  • Lagouvardos K, Kotroni V, Defer E (2007) The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: observations and model analysis. Q J R Meteorol Soc 133:1519–1531. doi:10.1002/qj.121

    Article  Google Scholar 

  • Lebeaupin-Brossier C, Drobinski P, Béranger K, Bastin S, Orain F (2013) Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the northwestern Mediterranean. Q J R Meteorol Soc 139:1583–1597. doi:10.1002/qj.2049

  • Madec G (2008) NEMO Ocean engine, note du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France (2008) No 27 ISSN No 1288–1619

  • Madonna E, Wernli H, Joos H, Martius O (2014) Warm conveyor belts in the ERA-Interim data set (1979–2010). Part I: climatology and potential vorticity evolution. J Clim 27:3–26

    Article  Google Scholar 

  • McTaggart-Cowan R, Galarneau TJ, Bosart LF, Milbrandt JA (2010) Development and tropical transition of an Alpine lee cyclone. Part I: case analysis and evaluation of numerical guidance. Mon Weather Rev 138:2281–2307. doi:10.1175/2009MWR3147.1

    Article  Google Scholar 

  • Moody JL, Munger JW, Goldstein AH, Jacob DJ, Wofsy SC (1998) Harvard forest regional-scale air mass composition by patterns in atmospheric transport history (PATH). J Geophys Res 103:13181–13194

    Article  Google Scholar 

  • Moscatello A, Miglietta MM, Rotunno R (2008) Numerical analysis of a Mediterranean ‘‘hurricane’’ over south-eastern Italy. Mon Weather Rev 136:4373–4396

    Article  Google Scholar 

  • Neiman PJ, Shapiro MA (1993) The life cycle of an extratropical marine cyclone. Part I: frontal-cyclone evolution and thermodynamic air–sea interaction. Mon Weather Rev 121:2153–2176

    Article  Google Scholar 

  • Neu U et al (2013) IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94:529–547. doi:10.1175/BAMS-D-11-00154.1

    Article  Google Scholar 

  • Nieto R, Sprenger M, Wernli H, Trigo R, Gimeno L (2008) Identification and climatology of cutoffs lows near the tropopause. Ann N Y Acad Sci 1146:256–290. doi:10.1196/annals.1446.016

    Article  Google Scholar 

  • Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat Hazards Earth Syst Sci 10:1379–1391. doi:10.5194/nhess-10-1379-2010

    Article  Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2012) Investigation of indiscriminate nudging and predictability in a nested quasi-geostrophic model. Q J R Meteorol Soc 138:158–169

    Article  Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470

    Article  Google Scholar 

  • Pfahl S, Wernli H (2012) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780. doi:10.1175/JCLI-D-11-00705.1

    Article  Google Scholar 

  • Pfahl S, Madonna E, Boettcher M, Joos H, Wernli H (2014) Warm conveyor belts in the ERA-Interim data set (1979–2010). Part II: moisture origin and relevance for precipitation. J Clim 27:27–40

    Article  Google Scholar 

  • Prezerakos NG, Flocas HA, Brikas D (2006) The role of the interaction between polar and subtropical jet in a case of depression rejuvenation over the Eastern Mediterranean. Meteorol Atmos Phys 92:139–151. doi:10.1007/s00703-005-0142-y

    Article  Google Scholar 

  • Pytharoulis I, Craig GC, Ballard SP (2000) The hurricane-like Mediterranean cyclone of January 1995. Meteorol Appl 7:261–279

    Article  Google Scholar 

  • Schär C, Sprenger M, Lüthi D, Jiang Q, Smith RB, Benoit R (2003) Structure and dynamics of an Alpine potential-vorticity banner. Q J R Meteorol Soc 129:825–855. doi:10.1256/qj.02.47

    Article  Google Scholar 

  • Schemm S, Wernli H (2014) The linkage between the warm and cold conveyor belts in an idealized extratropical cyclone. J Atmos Sci 71:1443–1459

    Article  Google Scholar 

  • Schemm S, Wernli H, Papritz L (2013) Warm conveyor belts in idealized moist baroclinic wave simulations. J Atmos Sci 70:627–652. doi:10.1175/JAS-D-12-0147.1

    Article  Google Scholar 

  • Shapiro MA, Wernli H, Bao JW, Methven J, Zou X, Doyle J, Holt T, Donall-Grell E, Nieman P (1999) A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: the bridge between theory and observations. In: Shapiro MA, Gronas S (eds) The life cycles of extratropical cyclones. American Meteorological Society, Boston, MA, pp 139–185

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485

    Article  Google Scholar 

  • Stoelinga MT (1996) A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon Weather Rev 124:849–874

    Article  Google Scholar 

  • Tafferner A (1990) Lee cyclogenesis resulting from the combined outbreak of cold air and potential vorticity against the Alps. Meteorol Atmos Phys 43:31–47

    Article  Google Scholar 

  • Thorncroft CD, Hoskins BJ, McIntyre ME (1993) Two paradigms of baroclinic-wave life-cycle behaviour. Q J R Meteorol Soc 119:17–55. doi:10.1002/qj.49711950903

    Article  Google Scholar 

  • Tosi E, Smith RB, Bradford ML (1987) Aerial observations of stratospheric descent in a Gulf of Genoa cyclone. Meteorol Atmos Phys 36(1987):141–160

    Article  Google Scholar 

  • Tous M, Romero R (2013) Meteorological environments associated with medicane development. Int J Climatol 33:1–14. doi:10.1002/joc.3428

    Article  Google Scholar 

  • Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Weather Rev 130:549–569. doi:10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Extratropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131

    Article  Google Scholar 

  • Wernli H, Davies HC (1997) A Lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Q J R Meteorol Soc 123:467–489

    Article  Google Scholar 

  • Wernli H, Dirren S, Liniger MA, Zillig M (2002) Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Q J R Meteorol Soc 128:405–429. doi:10.1256/003590002321042036

    Article  Google Scholar 

  • Ziv B, Saaroni H, Romem M, Heifetz E, Harnik N, Baharad A (2010) Analysis of conveyor belts in winter Mediterranean cyclones. Theor Appl Climatol 99:441–455. doi:10.1007/s00704-009-0150-9

    Article  Google Scholar 

Download references

Acknowledgments

EF was supported by the IMPACT2C program (funded by the European Union Seventh Framework Programme, FP7/2007–2013 under the grant agreement 282746) and the WRF simulation have been performed at the GENCI (IDRIS) under allocation i2012010227. SRR acknowledges funding from the ETH Postdoctoral Fellowship Program and the Marie Curie Actions for People COFUND program. The authors are thankful to Sebastian Schemm (ETH Zurich) for his remarks on the detection of conveyor belts. This work was also supported by the IPSL group for regional climate and environmental studies and also contributes to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment) through INSU-MISTRALS support and the Med–CORDEX program (A Coordinated Regional climate Downscaling Experiment-Mediterranean region).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Flaounas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flaounas, E., Raveh-Rubin, S., Wernli, H. et al. The dynamical structure of intense Mediterranean cyclones. Clim Dyn 44, 2411–2427 (2015). https://doi.org/10.1007/s00382-014-2330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2330-2

Keywords

Navigation