Skip to main content

Advertisement

Log in

Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing of this low-latitude climate system in detail. The North African monsoon is strengthened when northern hemisphere summer insolation is higher, as is the case in the minimum precession and maximum obliquity experiments. In these experiments, the low surface pressure areas over the Sahara are intensified and located farther north, and the meridional pressure gradient is further enhanced by a stronger South Atlantic high pressure area. As a result, the southwesterly monsoon winds are stronger and bring more moisture into the monsoon region from both the northern and southern tropical Atlantic. The monsoon winds, precipitation and convection also extend farther north into North Africa. The precession-induced changes are much larger than those induced by obliquity, but the latter are remarkable because obliquity-induced changes in summer insolation over the tropics are nearly zero. Our results provide a different explanation than previously proposed for mechanisms underlying the precession- and, especially, obliquity-related signals in paleoclimate proxy records of the North African monsoon. The EC-Earth experiments reveal that, instead of higher latitude mechanisms, increased moisture transport from both the northern and southern tropical Atlantic is responsible for the precession and obliquity signals in the North African monsoon. This increased moisture transport results from both increased insolation and an increased tropical insolation gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Balsamo G, Viterbo P, Beljaars A, van den Hurk B, Hirschi M, Betts AK, Scipal K (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeorol 10:623–643. doi:10.1175/2008JHM1068.1

    Article  Google Scholar 

  • Bechtold PKM, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134:1337–1351. doi:10.1002/qj

    Article  Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Bonfils C, de Noblet-Ducoudre N, Braconnot P, Joussaume S (2001) Hot Desert Albedo and climate change: Mid-Holocene monsoon in North Africa. J Clim 14:3724–3737

    Article  Google Scholar 

  • Bosmans JHC, Drijfhout SS, Tuenter E, Lourens LJ, Hilgen FJ, Weber SL (2012) Monsoonal response to Mid-Holocene orbital forcing in a high resolution GCM. Clim Past 8:723–740. doi:10.5194/cp-8-723-2012

    Article  Google Scholar 

  • Braconnot P, Joussaume S, Marti O, de Noblet N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to Mid-Holocene insolation. Geophys Res Lett 26(16):2481–2484

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3(2):261–277

    Article  Google Scholar 

  • Braconnot P, Marzin C, Gregoire L, Mosquet E, Marti O (2008) Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim Past 4(4):281–294

    Article  Google Scholar 

  • Chen GS, Zhengyu L, Clemens SC, Prell WL, Liu X (2011) Modeling the time-dependent response of the Asian summer monsoon to obliquity forcing in a coupled GCM: a PHASEMAP sensitivity experiment. Clim Dyn 36:695–710. doi:10.1007/s00382-010-0740-3

    Article  Google Scholar 

  • Clement A, Hall A, Broccoli A (2004) The importance of precessional signals in the tropical climate. Clim Dyn 22:327–341

    Article  Google Scholar 

  • de Noblet N, Braconnot P, Joussaume S, Masson V (1996) Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126, 115 and 6 kBP. Clim Dyn 12:589–603

    Article  Google Scholar 

  • Drake NA, Blench RM, Armitage SJ, Bristow CS, White KH (2011) Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc Natl Acad Sci 108(2): 458–462. doi:10.1073/pnas.1012231108, http://www.pnas.org/content/108/2/458.full.pdf+html

  • Drake NA, Breeze P, Parker A (2013) Palaeoclimate in the Saharan and Arabian Deserts during the Middle Palaeolithic and the potential for hominin dispersals. Quatern Int 300:48–61

    Article  Google Scholar 

  • Erb MP, Broccoli AJ, Clement AC (2013) The contribution of radiative feedbacks to orbitally-driven climate change. J Clim. doi:10.1175/JCLI-D-12-00419.1

  • Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation–atmosphere–ocean interaction on climate during the Mid-Holocene. Science 280(5371):1916–1919

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S, Wyser K, Wang X, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AM, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kallberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willen U (2010) EC-Earth: a seamless earth system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2011) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn. doi:10.1007/s00382-011-1228-5

  • Joussaume S, Braconnot P (1997) Sensitivity of paleoclimate simulation results to season definitions. J Geophys Res 102(D2):1943–1956

    Article  Google Scholar 

  • Khon VC, Park W, Latif M, Mokhov II, Schneider B (2010) Response of the hydrological cycle to orbital and greenhouse gas forcing. Geophys Res Lett 37. doi:10.1029/2010GL044377

  • Kutzbach JE (1981) Monsoon climate of the early holocene: climate experiment with the earth’s orbital parameters for 9000 years ago. Science 214(4516):59–61

    Article  Google Scholar 

  • Larrasoaña JC, Roberts AP, Rohling EJ, Winklhofer M, Wehausen R (2003) Three million years of monsoon variability over the northern Sahara. Clim Dyn 21:689–698. doi:10.1007/s00382-003-0355-z

    Article  Google Scholar 

  • Larrasoaña JC, Roberts AP, Rohling EJ (2013) Dynamics of green Sahara periods and their role in hominin evolution. PloS One 8(10):e76,514

  • Levis S, Bonan GB, Bonfils C (2004) Soil feedback drives the Mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Clim Dyn 23:791–802. doi:10.1007/s00382-004-0477-y

    Article  Google Scholar 

  • Lourens LJ, Antonarakou A, Hilgen FJ, Hoof AAMV, Zachariasse WJ (1996) Evaluation of the Plio–Pleistocene astronomical timescale. Paleoceanography 11(4):391–413

    Article  Google Scholar 

  • Lourens LJ, Wehausen R, Brumsack HJ (2001) Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409:1029–1034

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Tech. rep., Institut Pierre-Simon Laplace, note du Pole de modelisation de l’Institut Pierre-Simon Laplace no. 27 (2008)

  • Mantsis DF, Clement B, Kirtman B, Broccoli AJ, Erb MP (2013) Precessional cycles and their influence on the North Pacific and North Atlantic summer anticyclones. J Clim. doi:10.1175/JCLI-D-12-00343.1

  • Merlis TM, Schneider T, Bordoni S, Eisenman I (2013a) Hadley circulation response to orbital precession. Part II: subtropical continent. J Clim 26. doi:10.1175/JCLI-D-12-00149.1

  • Merlis TM, Schneider T, Bordoni S, Eisenman I (2013b) The tropical precipitation response to orbital precession. J Clim 26. doi:10.1175/JCLI-D-12-00186.1

  • Montoya M, von Storch H, Crowley TJ (2000) Climate simulation for 125 kyr BP with a coupled ocean–atmosphere general circulation model. J Clim 13:1057–1072

    Article  Google Scholar 

  • Nicholson SE (2009) A revised picture of the structure of the monsoon and land ITCZ over West Africa. Clim Dyn 32:1155–1171. doi:10.1007/s00382-008-0514-3

    Article  Google Scholar 

  • Osborne AH, Vance D, Rohling EJ, Barton N, Rogerson M, Fello N (2008) A humid corridor across the Sahara for the migration of early modern humans out of Africa 120,000 years ago. Proc Natl Acad Sci 105(43):16444–16447. doi:10.1073/pnas.0804472105, http://www.pnas.org/content/105/43/16444.full.pdf+html

  • Pokras EM, Mix AC (1987) Earth’s precessional cycle and Quaternary climatic change in tropical Africa. Nature 326:486–487

    Article  Google Scholar 

  • Prell WL, Kutzbach JE (1987) Monsoon variability over the past 150,000 years. J Geophys Res 92(D7):8411–8425

    Article  Google Scholar 

  • Rossignol-Strick M (1985) Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeogr Palaeoclimatol Palaeoecol 49:237–263

    Article  Google Scholar 

  • Short DA, Mengel JG (1986) Tropical climatic phase lags and Earth’s precession cycle. Nature 323:48–50

    Article  Google Scholar 

  • Sterl A, Bintanja R, Brodeau L, Gleeson E, Koenigk T, Schmith T, Semmler T, Severijns C, Wyser K, Yang S (2011) A look at the ocean in the EC-Earth climate model. Clim Dyn. doi:10.1007/s00382-011-1239-2

  • Texier D, de Noblet N, Braconnot P (2000) Sensitivity of the African and Asian monsoons to Mid-Holocene insolation and data-inferred surface changes. J Clim 13:164–181

    Article  Google Scholar 

  • Trauth MH, Larrasoaña JC, Mudelsee M (2009) Trends, rhythms and events in Plio–Pleistocene African climate. Quatern Sci Rev 28(5):399–411

    Article  Google Scholar 

  • Tuenter E, Weber SL, Hilgen FJ, Lourens LJ (2003) The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Glob Planet Change 36:219–235. doi:10.1016/S0921-8181(02)00196-0

    Article  Google Scholar 

  • Valcke S, Morel T (2006) OASIS3 user guide. Tech. rep., CERFACS, prism technical report. http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf

  • van der Laan E, Gaboardi S, Hilgen FJ, Lourens LJ (2005) Regional climate and glacial control on high-resolution oxygen isotope records from Ain el Beida (latest Miocene, northwest Morocco): a cyclostratigraphic analysis in the depth and time domain. Paleoceanography 20:1–22. doi:10.1029/2003PA000995

    Google Scholar 

  • Ziegler M, Tuenter E, Lourens L (2010) The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quatern Sci Rev 29(11–12):1481–1490. doi:10.1016/j.quascirev.2010.03.011

    Article  Google Scholar 

Download references

Acknowledgments

Computing time was provided by the Royal Netherlands Meteorological Institute (KNMI) and the European Center for Medium-range Weather Forecast (ECMWF). Joyce Bosmans was funded by a “Focus en Massa” Grant of Utrecht University, the Netherlands. The authors thank the editor and two anonymous reviewers for their comments which helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. C. Bosmans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosmans, J.H.C., Drijfhout, S.S., Tuenter, E. et al. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim Dyn 44, 279–297 (2015). https://doi.org/10.1007/s00382-014-2260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2260-z

Keywords

Navigation