Skip to main content

Advertisement

Log in

Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterisation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the performance of two planetary boundary layer (PBL) parameterisations in the regional climate model RegCM4.2 with specific focus on the recently implemented prognostic turbulent kinetic energy parameterisation scheme: the University of Washington (UW) scheme. When compared with the default Holtslag scheme, the UW scheme, in the 10-year experiments over the European domain, shows a substantial cooling. It reduces winter warm bias over the north-eastern Europe by 2 °C and reduces summer warm bias over central Europe by 3 °C. A part of the detected cooling is ascribed to a general reduction in lower tropospheric eddy heat diffusivity with the UW scheme. While differences in temperature tendency due to PBL schemes are mostly localized to the lower troposphere, the schemes show a much higher diversity in how vertical turbulent mixing of the water vapour mixing ratio is governed. Differences in the water vapour mixing ratio tendency due to the PBL scheme are present almost throughout the troposphere. However, they alone cannot explain the overall water vapour mixing ratio profiles, suggesting strong interaction between the PBL and other model parameterisations. An additional 18-member ensemble with the UW scheme is made, where two formulations of the master turbulent length scale in unstable conditions are tested and unconstrained parameters associated with (a) the evaporative enhancement of the cloud-top entrainment and (b) the formulation of the master turbulent length scale in stable conditions are systematically perturbed. These experiments suggest that the master turbulent length scale in the UW scheme could be further refined in the current implementation in the RegCM model. It was also found that the UW scheme is less sensitive to the variations of the other two selected unconstrained parameters, supporting the choice of these parameters in the default formulation of the UW scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. PSU/NCAR Mesoscale Model, version 5, Pennsylvania State University and National Center for Atmospheric Research, USA.

  2. Weather Research and Forecasting community model (http://www.wrf-model.org).

  3. Climatic Research Unit, University of East Anglia, Norwich, UK.

  4. Available from http://gforge.ictp.it/gf/project/regcm/.

  5. From now on, all vertical profiles are shown for the σ interval [1.0, 0.25], where the main differences between two PBL schemes occur.

  6. Although no simple physical interpretation of changes in turbulent eddy characteristics is obvious when changing the slope or curvature of temperature profile, one can note a “diffusion-like” (∂T/∂t = K H 2 T/∂z 2) and a “wave-like” (∂T/∂t = ∂K H /∂z ∂T/∂z; where units of ∂K H /∂z are ms−1) parts of Eq. 13.

  7. We recognize that these changes in qv tendency seem surprisingly large, however, we have rigorously verified that they reflect the actual PBL tendencies.

References

  • Baklanov A, Grisogono B, Bornstein R, Mahrt L, Zilitinkevich S, Taylor P, Larsen S, Rotach M, Fernando HJS (2011) On the nature, theory, and modeling of atmospheric planetary boundary layers. Bull Am Meteor Soc 92:123–128

    Article  Google Scholar 

  • Bellprat O, Kotlarski S, Lüthi D, Schär C (2012) Exploring perturbed physics ensembles in a regional climate model. J Clim 25:4582–4599

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  • Bretherton CS, Park S (2009) A new moist turbulence parameterization in the community atmosphere model. J Clim 22:3422–3448

    Article  Google Scholar 

  • Coppola E, Giorgi F, Mariotti L, Bi X (2012) RegT-Band: a tropical band version of RegCM4. Clim Res 52:115–133

    Article  Google Scholar 

  • Curry JA, Webster PJ (2011) Climate science and the uncertainty monster. Bull Am Meteor Soc 92:1667–1682

    Article  Google Scholar 

  • Cuxart J et al (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound-Layer Meteor 118:273–303

    Article  Google Scholar 

  • Davis N, Bowden J, Semazzi F, Xie L, Önol B (2009) Customization of RegCM3 regional climate model for eastern Africa and a tropical Indian Ocean domain. J Clim 22:3595–3616

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dethloff K, Abegg C, Rinke A, Hebestadt I, Romanov VF (2001) Sensitivity of Arctic climate simulations to different boundary-layer parameterizations in a regional climate model. Tellus 53A:1–26

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387 + STR, NCAR, Boulder, Colorado, USA, 72 pp

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Esau I, Zilitinkevich S (2010) On the role of the planetary boundary layer depth in the climate system. Adv Sci Res 4:63–69

    Article  Google Scholar 

  • Galperin B, Kantha LH, Hassid S, Rosati A (1988) A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci 45:55–62

    Article  Google Scholar 

  • García-Díez M, Fernández J, Fita L, Yagüe C (2013) Seasonal dependence of WRF bias and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc 139:501–514

    Article  Google Scholar 

  • Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25:638–656

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993) Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377

    Article  Google Scholar 

  • Grisogono B (2010) Generalizing ‘z-less’ mixing length for stable boundary layers. Q J R Meteorol Soc 136:213–221

    Article  Google Scholar 

  • Güttler I (2011) Reducing warm bias over the north-eastern Europe in a regional climate model. Croatian Meteorol J 44(45):19–29

    Google Scholar 

  • Güttler I, Branković Č, Srnec L, Patarčić M (2013) The impact of boundary forcing on RegCM4.2 surface energy budget. Clim Change. doi:10.1007/s10584-013-0995-x

  • Holtslag AAM, Boville B (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Holtslag AAM, Moeng C-H (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48:1690–1698

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Hu X-M, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary-layer schemes in the WRF model. J Appl Meteor Climatol 49:1831–1844

    Article  Google Scholar 

  • Jaeger EB, Stöckli R, Seneviratne SI (2009) Analysis of planetary boundary layer fluxes and land-atmosphere coupling in the regional climate model CLM. J Geophys Res 114:D17106. doi:10.1029/2008JD011658

    Article  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). NCAR Tech. Note NCAR/TN-420 + STR. NCAR, Boulder, Colorado, USA, 152 pp

  • Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Crichton DJ, Jones C, Nikulin G, Hewitson B, Jack C, Lennard C, Favre A (2013) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn. doi:10.1007/s00382-013-1751-7

  • Knight CG, Knight SHE, Massey N, Aina T, Christensen C, Frame DJ, Kettleborough JA, Martin A, Pascoe S, Sanderson B, Stainforth DA, Allen MR (2007) Association of parameter, software, and hardware variation with large-scale behaviour across 57,000 climate models. Proc Natl Acad Sci USA 104:12259–12264

    Article  Google Scholar 

  • Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res 115:D23120. doi:10.1029/2010JD014331

    Article  Google Scholar 

  • Mahrt L, Vickers D (2003) Formulation of turbulent fluxes in the stable boundary layer. J Atmos Sci 60:2538–2548

    Article  Google Scholar 

  • Mauritsen T, Svensson G, Zilitinkevich SS, Esau I, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci 64:4113–4126

    Article  Google Scholar 

  • Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J Jr, Flory D, Gutowski W, Takle ES, Jones R, Leung R, Muofouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads J, Sloan L, Snyder M (2012) The North American Regional Climate Change Assessment Program: overview of phase I results. Bull Am Meteor Soc 93:1337–1362

    Article  Google Scholar 

  • Medeiros B, Hall A, Stevens B (2005) What controls the mean depth of the PBL? J Clim 18:3157–3172

    Article  Google Scholar 

  • Mellor G, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Astrophys Space Phys 20:851–875

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Nicholls S, Turton JD (1986) Observational study of the structure of stratiform cloud layers. Part II: entrainment. Q J R Meteorol Soc 112:461–480

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  • O’Brien TA, Sloan LC, Snyder MA (2011) Can ensembles of regional climate model simulations improve results from sensitivity studies? Clim Dyn 37:1111–1118

    Article  Google Scholar 

  • O’Brien TA, Chuang PY, Sloan LC, Faloona IC, Rossiter DL (2012) Coupling a new turbulence parametrization to RegCM adds realistic stratocumulus clouds. Geosci Model Dev Discuss 5:989–1008

    Article  Google Scholar 

  • Ozturk T, Altinsoy H, Türkeş M, Kuranz ML (2012) Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM 4.0. Clim Res 52:63–76

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EA (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:D24, 29579–29594

    Google Scholar 

  • Pielke RA Sr (2002) Mesoscale meteorological modeling, 2nd edn. Academic Press, San Diego, p 676

    Google Scholar 

  • Sánchez E, Yagüe C, Gaertner MA (2007) Planetary boundary layer energetics simulated from a regional climate model over Europe for present climate and climate change conditions. Geophys Res Lett 34:L01709. doi:10.1029/2006GL028340

    Google Scholar 

  • Shin S-H, Ha K-J (2007) Effects of spatial and temporal variations in PBL depth on a GCM. J Clim 20:4717–4732

    Article  Google Scholar 

  • Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113

    Article  Google Scholar 

  • Stainforth DA et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Stainforth DA, Allen MR, Tredger ER, Smith LA (2007) Confidence, uncertainty and decision-support relevance in climate predictions. Philos Trans R Soc Lond A365:2145–2161

    Article  Google Scholar 

  • Steiner AL, Pal JS, Giorgi F, Dickinson RE, Chameides WL (2005) The coupling of the common land model (CLM0) to a regional climate model (RegCM). Theor Appl Climatol 82:225–243

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892

    Article  Google Scholar 

  • Stensrud D (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, Cambridge, p 459

    Book  Google Scholar 

  • Stewart RW (1979) The atmospheric boundary layer, WMO no 523. World Meteorological Organization, Geneva, p 44

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 666

    Book  Google Scholar 

  • Suklitsch M, Gobiet A, Truhetz H, Awan NK, Göttel H, Jacob D (2011) Error characteristics of high resolution regional climate models over the Alpine region. Clim Dyn 37:377–390

    Article  Google Scholar 

  • Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high-resolution ERA-Interim reanalysis. Clim Dyn 35:231–247

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond A365:2053–2075

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteor Soc 90:311–323

    Article  Google Scholar 

  • Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Bound-Layer Meteor 37:129–148

    Article  Google Scholar 

  • Van de Berg WJ, van den Broeke MR, van Meijgaard F (2007) Heat budget of the East Antarctic lower atmosphere derived from a regional atmospheric climate model. J Geophys Res 112:D23101. doi:10.1029/2007JD008613

    Article  Google Scholar 

  • Vautard R et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75

    Article  Google Scholar 

  • Winter JM, Pal JS, Eltahir EAB (2009) Coupling of integrated biosphere simulator to regional climate model version 3. J Clim 22:2743–2757

    Article  Google Scholar 

  • Winton M (2006) Surface albedo feedback estimates for the AR4 climate models. J Clim 19:359–365

    Article  Google Scholar 

  • Wyngaard JC (1985) Structure of the planetary boundary layer and implications for its modeling. J Clim Appl Meteorol 24:1131–1142

    Article  Google Scholar 

  • Xie B, Fung JCH, Chan A, Lau A (2012) Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J Geophys Res 117:D12103. doi:10.1029/2011JD017080

    Google Scholar 

  • Yang Z, Arritt RW (2002) Test of a perturbed physics ensemble approach for regional climate modeling. J Clim 15:2881–2986

    Article  Google Scholar 

  • Zhang Y, Xie S, Covey C, Lucas DD, Gleckler P, Klein SA, Tannahill J, Doutriaux C, Klein R (2012) Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys Res Lett 39:L14708. doi:10.1029/2012GL052184

    Google Scholar 

  • Zhu P et al (2005) Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer. Mon Weather Rev 133:2741–2758

    Article  Google Scholar 

Download references

Acknowledgments

ECMWF ERA-Interim data used in this study have been obtained from the ECMWF data server. University of East Anglia CRU data used in this study have been obtained from http://badc.nerc.ac.uk. Surface flux measurements from the EUMETNET organized C-SRNWP Project have been obtained from the COSMO consortium database (http://www.como-model.org/srnwp/content) and provided by the FMI, KNMI, DWD and Meteo-France. Computations and visualizations in this study have been performed using cdo (https://code.zmaw.de/projects/cdo), GrADS (http://www.iges.org/grads) and R (http://www.R-project.org/) software. Branko Grisogono is supported by the Croatian Ministry of Science, Education and Sports (MZOS) and Croatian Science Foundation through projects BORA-MZOS 119-1193086-1311 and CATURBO-HRZZ 09/151. Ivan Güttler and Čedo Branković are supported by the MZOS project 004-1193086-3035. The contribution by T.A. O’Brien was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Regional and Global Climate Modeling Program (RGCM). We thank to two anonymous reviewers for their constructive criticism, comments and suggestions that greatly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Güttler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 726 kb)

Supplementary material 2 (DOC 4,324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güttler, I., Branković, Č., O’Brien, T.A. et al. Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterisation. Clim Dyn 43, 1753–1772 (2014). https://doi.org/10.1007/s00382-013-2003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2003-6

Keywords

Navigation