Skip to main content

Advertisement

Log in

CFSv2 ensemble prediction of the wintertime Arctic Oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Lagged ensembles from the operational Climate Forecast System version 2 (CFSv2) seasonal hindcast dataset are used to assess skill in forecasting interannual variability of the December–February Arctic Oscillation (AO). We find that a small but statistically significant portion of the interannual variance (>20 %) of the wintertime AO can be predicted at leads up to 2 months using lagged ensemble averages. As far as we are aware, this is the first study to demonstrate that an operational model has discernible skill in predicting AO variability on seasonal timescales. We find that the CFS forecast skill is slightly higher when a weighted ensemble is used that rewards forecast runs with the most accurate representations of October Eurasian snow cover extent (SCE), hinting that a stratospheric pathway linking October Eurasian SCE with the AO may be responsible for the model skill. However, further analysis reveals that the CFS is unable to capture many important aspects of this stratospheric mechanism. Model deficiencies identified include: (1) the CFS significantly underestimates the observed variance in October Eurasian SCE, (2) the CFS fails to translate surface pressure anomalies associated with SCE anomalies into vertically propagating waves, and (3) stratospheric AO patterns in the CFS fail to propagate downward through the tropopause to the surface. Thus, alternate boundary forcings are likely contributing to model skill. Improving model deficiencies identified in this study may lead to even more skillful predictions of wintertime AO variability in future versions of the CFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen RJ, Zender CS (2010) Effects of continental-scale snow albedo anomalies on the wintertime Arctic oscillation. J Geophys Res 115:D23105. doi:10.1029/2010JD014490

    Article  Google Scholar 

  • Allen RJ, Zender CS (2011) Forcing of the Arctic Oscillation by Eurasian snow cover. J Clim 24:6528–6539. doi:10.1175/2011JCLI4157.1

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104:30937–30946

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584. doi:10.1126/science.1063315

    Article  Google Scholar 

  • Buermann W, Anderson B, Tucker CJ, Dickenson RE, Lucht W, Potter CS, Myneni RB (2003) Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El Niño-Southern Oscillation and the Arctic Oscillation. J Geophys Res 108:4396. doi:10.1029/2002JD002630

    Article  Google Scholar 

  • Chen M, Wang W, Kumar A (2013) Lagged ensembles, forecast configuration, and seasonal predictions. Mon Weather Rev. doi:10.1175/MWR-D-12-00184.1

  • Cohen J, Barlow M (2005) The NAO, the AO, and global warming: How closely related? J Clim 18:4498–4513. doi:10.1175/JCLI3530.1

    Article  Google Scholar 

  • Cohen J, Entekhabi D (2001) The influence of snow cover on Northern Hemisphere climate variability. Atmos Ocean 39:35–53

    Article  Google Scholar 

  • Cohen J, Fletcher C (2007) Improved skill of Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies. J Clim 20:4118–4132. doi:10.1175/JCLI4241.1

    Article  Google Scholar 

  • Cohen J, Jones J (2011a) A new index for more accurate winter predictions. Geophys Res Lett 38:L21701. doi:10.1029/2011GL049626

    Google Scholar 

  • Cohen J, Jones J (2011b) Tropospheric precursors and stratospheric warmings. J Clim 24:6562–6572. doi:10.1175/2011JCLI4160.1

    Article  Google Scholar 

  • Cohen J, Barlow M, Kushner PJ, Saito K (2007) Stratosphere–troposphere coupling and links with Eurasian land surface variability. J Clim 20:5335–5343. doi:10.1175/2007JCLI1725.1

    Article  Google Scholar 

  • Déqué M (1997) Ensemble size for numerical seasonal forecasts. Tellus A 49A:74–86

    Article  Google Scholar 

  • Derome J, Lin H, Brunet G (2005) Seasonal forecasting with a simple general circulation model: predictive skill in the AO and PNA. J Clim 18:597–609

    Article  Google Scholar 

  • Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23:333–351. doi:10.1175/2009JCLI3053.1

    Article  Google Scholar 

  • Doblas-Reyes FJ, Pavan V, Stephenson DB (2003) The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Clim Dyn 21:501–514. doi:10.1007/s00382-003-0350-4

    Article  Google Scholar 

  • Douville H (2009) Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys Res Lett 36:L18703. doi:10.1029/2009GL039334

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Fletcher CG, Kushner PJ (2011) The role of linear interference in the annular mode response to tropical SST forcing. J Clim 24:778–794. doi:10.1175/2010JCLI3735.1

    Article  Google Scholar 

  • Fletcher CG, Hardiman SC, Kushner PJ, Cohen J (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22:1208–1222. doi:10.1175/2008JCLI2505.1

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2007) Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J Geophys Res 112:D19112. doi:10.1029/2007JD008481

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi:10.1029/2008JD009920

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J Clim 23:3282–3299. doi:10.1175/2010JCLI3010.1

    Article  Google Scholar 

  • Garfinkel CI, Butler AH, Waugh DW, Hurwitz MM, Polvani LM (2012) Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J Geophys Res 117:D19106. doi:10.1029/2012JD017777

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J (2003) Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J Clim 16:3917–3931

    Article  Google Scholar 

  • Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group technical report no 5, p 342

  • Hardiman SC, Kushner PJ, Cohen J (2008) Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. J Geophys Res 113:D21123. doi:10.1029/2008JD010623

    Google Scholar 

  • Haynes PH, Marks CJ, McIntyre ME , Shepherd TG, Shine KP (1991) On the “downward control” of extratropical diabetic circulations by eddy-induced mean zonal forces. J Atmos Sci 48:651–678

    Article  Google Scholar 

  • Hu Z–Z, Huang B (2006) On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic sea surface temperature anomalies. J Geophys Res 111:D12103. doi:10.1029/2005JD006339

    Article  Google Scholar 

  • Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res 117:D19110. doi:10.1029/2012JD017819

    Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36. doi:10.1038/ngeo381

    Article  Google Scholar 

  • Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757. doi:10.1038/ngeo1282

    Article  Google Scholar 

  • Johansson Å (2007) Prediction Skill of the NAO and PNA from Daily to Seasonal Time Scales. J Clim 20:1957–1975. doi:10.1175/JCLI4072.1

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Gagnon N (2001) Skill of seasonal hindcasts as a function of the ensemble size. Clim Dyn 17:835–843

    Article  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2012) Seasonal prediction skill of ECMWF system 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim Dyn 39:2957–2973. doi:10.1007/s00382-012-1364-6

    Article  Google Scholar 

  • Kopp TJ, Kiess RB (1996) The air force global weather central snow analysis model. In: Preprint 15th conference on weather analysis and forecasting, American Meteorological Society, Norfolk, VA, pp 220–222

  • Kumar A (2009) Finite samples and uncertainty estimates for skill measures for seasonal prediction. Mon Weather Rev 137:2622–2631. doi:10.1175/2009MWR2814.1

    Article  Google Scholar 

  • Kumar A, Hoerling M (2000) Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction. Bull Am Meteorol Soc 81:255–264

    Article  Google Scholar 

  • Kumar A, Barnston AG, Hoerling MP (2001) Seasonal predictions, probabilistic verifications, and ensemble size. J Clim 14:1671–1676

    Article  Google Scholar 

  • Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 109:4074–4079. doi:10.1073/pnas.1114910109

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2003) Eddy-zonal flow feedback in the Northern Hemisphere winter. J Clim 16:1212–1227

    Article  Google Scholar 

  • Lu B-W, Pandolfo L (2011) Nonlinear relation of the Arctic oscillation with the quasi-biennial oscillation. Clim Dyn 36:1491–1504. doi:10.1007/s00382-010-0773-7

    Article  Google Scholar 

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494

    Article  Google Scholar 

  • Meehl GA, Hu A, Tebaldi C (2010) Decadal prediction in the Pacific region. J Clim 23:2959–2973. doi:10.1175/2010JCLI3296.1

    Article  Google Scholar 

  • Müller WA, Appenzeller C, Schär C (2004) Probabilistic seasonal prediction of the winter North Atlantic Oscillation and its impact on near surface temperature. Clim Dyn 24:213–226. doi:10.1007/s00382-004-0492-z

    Article  Google Scholar 

  • Orsolini YJ, Kvamstø NG (2009) Role of Eurasian snow cover in wintertime circulation: decadal simulations forced with satellite observations. J Geophys Res 114:D19108. doi:10.1029/2009JD012253

    Article  Google Scholar 

  • Orsolini YJ, Kindem IT, Kvamstø NG (2011) On the potential impact of the stratosphere upon seasonal dynamical hindcasts of the North Atlantic Oscillation: a pilot study. Clim Dyn 36:579–588. doi:10.1007/s00382-009-0705-6

    Article  Google Scholar 

  • Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the influence of Siberian snow on the Northern Annular Mode. J Clim 25:592–607. doi:10.1175/JCLI-D-11-00038.1

    Article  Google Scholar 

  • Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci  42:217–229

    Google Scholar 

  • Ramsay BH (1998) The interactive multisensor snow and ice mapping system. Hydrol Proc 12:1537–1546

    Google Scholar 

  • Robinson DA, Dewey KF, Heim RR (1993) Global snow cover monitoring: An update. Bull Am Meteorol Soc 74:1689–1696

    Google Scholar 

  • Robinson WA (2000) A baroclinic mechanism for the eddy feedback on the zonal index. J Atmos Sci 57:415–422. doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2

    Article  Google Scholar 

  • Ruzmaikin A, Feynman J (2002) Solar influence on a major mode of atmospheric variability. J Geophys Res. 107:D144209. doi:10.1029/2001/JD001239

  • Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi:10.1175/2010Bams3001.1

    Google Scholar 

  • Schubert S, Suarez M, Schemm J-K, Epstein E (1992) Dynamically stratified Monte Carlo forecasting. Mon Weather Rev 120:1077–1088

    Article  Google Scholar 

  • Sigmond M, Scinocca JF, Kharin VV, Shepherd TG (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat Geosci 6:98–102. doi:10.1038/ngeo1698

    Article  Google Scholar 

  • Song Y, Robinson WA (2004) Dynamical mechanisms for stratospheric influences on the troposphere. J Atmos Sci 61:1711–1725

    Article  Google Scholar 

  • Strong C, Magnusdottir G (2011) Dependence of NAO variability on coupling with sea ice. Clim Dyn 36:1681–1689. doi:10.1007/s00382-010-0752-z

    Article  Google Scholar 

  • Tang Y, Lin H, Derome J, Tippett MK (2007) A predictability measure applied to seasonal predictions of the Arctic Oscillation. J Clim 20:4733–4750. doi:10.1175/JCLI4276.1

    Article  Google Scholar 

  • Thompson D, Wallace J (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293:85–89. doi:10.1126/science.1058958

    Article  Google Scholar 

  • Wang W, Anderson BT, Kaufmann RK, Myneni RB (2004) The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J Clim 17:4752–4759

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, International Geophysics Series, 3rd edn, vol 100. Academic Press, London, p 676

  • Yuan X, Wood EF, Luo L, Pan M (2011) A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys Res Lett 38:L13402. doi:10.1029/2011GL047792

    Google Scholar 

Download references

Acknowledgments

Work for this project was supported by NOAA Grant #NA10OAR4310163. The observational snow cover dataset was provided by Rutgers University Global Snow Lab. We greatly appreciate helpful editorial comments provided by Dan Collins, Craig Long and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily E. Riddle.

Additional information

This paper is a contribution to the Topical Collection on Climate Forecast System Version 2 (CFSv2). CFSv2 is a coupled global climate model and was implemented by National Centers for Environmental Prediction (NCEP) in seasonal forecasting operations in March 2011. This Topical Collection is coordinated by Jin Huang, Arun Kumar, Jim Kinter and Annarita Mariotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddle, E.E., Butler, A.H., Furtado, J.C. et al. CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Clim Dyn 41, 1099–1116 (2013). https://doi.org/10.1007/s00382-013-1850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1850-5

Keywords

Navigation