Skip to main content

Advertisement

Log in

Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961–1990 to represent baseline climate, and 2011–2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011–2040, 2041–2070 and 2071–2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4–6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation–Evaporation (P–E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and São Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alves LM, Marengo JA (2009) Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theor Appl Climatol. doi:10.1007/s00704-009-0165-2

  • Assad E, Pinto HS (2008) Aquecimento Global e a nova Geografia da Produção Agrícola no Brasil, EMBRAPA (Cepagri/Unicamp). São Paulo—Agosto de 2008. http://www.climaeagricultura.org.br

  • Betts AK, Miller MT (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–703. doi:10.1002/qj.49711247308

    Google Scholar 

  • Black TL (1994) NMC notes. The new NMC mesoscale Eta Model: description and forecast examples. Weather Anal Forecast 9:256–278

    Google Scholar 

  • Bustamante J, Gomes JL, Chou SC (2006) 5-Year Eta Model seasonal forecast climatology over South America. In: 8th International conference on southern hemisphere meteorology and oceanography, 2006, Foz do Iguaçu

  • Cabré MF, Solman S, Nuñez M (2010) Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations. Clim Change 98:449–469. doi:10.1007/s10584-009-9737-5

    Article  Google Scholar 

  • Cavalcanti IFA, Kousky VE (2001) Drought in Brazil during summer and fall 2001 and associated atmospheric circulation fields. Climanalise 2(01):1–10

    Google Scholar 

  • CEDEPLAR and FIOCRUZ (2008) Mudanças Climáticas, Migrações e Saúde: Cenários para o Nordeste 2000–2050, Centro de Desenvolvimento e Planejamento Regional (Cedeplar) da Universidade Federal de Minas Gerais (UFMG), Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, MG

  • Chou SC, Nunes AMB, Cavalcanti IFA (2000) Extended range forecasts over South America using the regional Eta Model. J Geophys Res 105(D8):10147–10160

    Article  Google Scholar 

  • Chou SC, Tanajura CAS, Xue Y, Nobre CA (2002) Simulations with the coupled Eta/SSiB Model over South America. J Geophys Res 107(20):8088. doi:10.1029/2000JD000270

    Google Scholar 

  • Chou SC, Bustamante JF, Gomes JL (2005) Evaluation of Eta Model seasonal precipitation forecasts over South America. Nonlinear Process Geophys 12(4):537–555

    Article  Google Scholar 

  • Chou SC, Marengo JA, Lyra A, Sueiro G, Pesquero J, Alves LM, Kay G, Betts R, Chagas D, Gomes JL, Bustamante J, Tavares P (2011) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn. doi:10.1007/s00382-011-1002-8

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Chapter 11, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of a HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17:61–81. doi:10.1007/s003820000094

    Article  Google Scholar 

  • Collins M, Booth BB, Harris GR, Murphy JM, Sexton DHM, and Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn. doi:10.1007/s00382-006-0121-0

  • Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the coupled model intercomparison project. Glob Planet Change 37:103–133

    Article  Google Scholar 

  • Cox P, Betts R, Jones C, Spall S, Totterdell T (2000) Acceleration of global; warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Google Scholar 

  • Cox P, Betts R, Collins M, Harris P, Huntingford C, Jones C (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st Century. Theor Appl Climatol 78:137–156

    Google Scholar 

  • Cox P, Harris P, Huntingford C, Betts R, Collins M, Jones C, Jupp T, Marengo JA, Nobre CA (2008) Increase risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–216

    Article  Google Scholar 

  • da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res 114:D10108. doi:10.1029/2008JD010212

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grummen P, Koren V, Gayno G, Tarpley JD (2003) Implementation of NOAH land surface advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. Geophys Res 108:8851. doi:10.1029/2002JD003246

    Article  Google Scholar 

  • Fels SB, Schwarzkopf MD (1975) The simplified exchange approximation: a new method for radiative transfer calculations. J Atmos Sci 32:1475–1488

    Article  Google Scholar 

  • Garreaud R, Falvey M (2008) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29:543–554. doi:10.1002/joc.1716

    Article  Google Scholar 

  • Good P, Lowe J, Collins M, Moufouma-Okia W (2008) An objective tropical Atlantic sea surface temperature gradient index for studies of South Amazon dry-season climate variability and change. Philos Trans R Soc Ser B 363:1761–1766

    Article  Google Scholar 

  • Gordon C et al (2000) Simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Harris P, Huntingford C, Cox PM (2008) Amazon Basin climate under global warming: the role of the sea surface temperature. Philos Trans R Soc Ser B 363:1753–1759

    Article  Google Scholar 

  • Janjic ZI (1979) Forward-backward scheme modified to prevent two grid-interval noise and its application in sigma coordinate models. Contrib Atmos Phys 52:69–84

    Google Scholar 

  • Janjic ZI (1994) The step-mountain Eta Coordinate Model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Lacis AA, Hansen JE (1974) A parameterization of the absorption of solar radiation in earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  • Li W, Fu R, Dickinson RE (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J Geophys Res 111:D02111. doi:10.1029/2005JD006355

    Article  Google Scholar 

  • Nobre CA, Young AF, Salvida P, Marengo, JA, Nobre AD, Ales S Jr, da Silva GCM, Lombardo M (2010) Vulnerabilidade das Megacidades Brasileiras ás Mudanças Climáticas: Região Metropolitana de São Paulo. INPE/UNICAMP/USP/IPT/UNESP. Junho 2010, 31 pp

  • Marengo JA, Cavalcanti IFA, Satyamurty P, Trosuikov I, Nobre CA, Bonatti JP, Camargo H, Sampaio G, Sanches MB, Manzi AO, Castro CAC, D' Almeida C, Pezzi LP, Candido L (2003) Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCM. Clim Dyn 21:459–475

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, De Oliveira GS, Oliveira R, Camargo H, Alves LM, Brown IF (2008a) The drought of Amazonia in 2005. J Clim 21:495–516

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama MD (2008b) Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos Trans R Soc B 363:1773–1778

    Article  Google Scholar 

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009a) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 15:2241–2255

    Article  Google Scholar 

  • Marengo JA, Ambrizzi T, Rocha RP, Alves LM, Cuadra SV, Valverde MC, Ferraz SET, Torres RR, Santos DC (2009b) Future change of climate in South America in the late XXI century: intercomparison of scenarios from three regional climate models. Clim Dyn. doi:10.1007/s00382-009-0721-6

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394

    Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for boundary layers. J Atmos Sci 31:1791–1806. doi:10.1175/1520-0469(1974)031

    Article  Google Scholar 

  • Menéndez C, de Castro M, Boulanger J-P, D’Onofrio A, Sanchez E, Sörensson AA, Blazquez J, Elizalde A, Jacob D, Le Treut H, ZX Li, Nuñez MN, Pessacg N, Pfeiffer S, Rojas M, Rolla A, Samuelsson P, Solman SA, Teichmann C (2010) Downscaling extreme month-long anomalies in southern South America. Clim Change 98:379–403. doi:10.1007/s10584-009-9739-3

    Article  Google Scholar 

  • Mesinger F (1984) A blocking technique for representation of mountains in atmospheric models. Rivista di Meteorologia Aeronautica 44(1–4):195–202

    Google Scholar 

  • Mesinger F, Janjic ZI, Nickovic S, Gavrilov D, Deaven DG (1988) The step-mountain coordinate: Model description description and performance for cases of Alpine lee cyclogenesis and for a case of Appalachian redevelopment. Mon Weather Rev 116:1493–1518

    Article  Google Scholar 

  • Milly PCD et al (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772. doi:10.1038/nature02771

    Article  Google Scholar 

  • Murphy JMB, Booth BBB, Collins M, Harris GR, Sexton DMH, Webb MJ (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans Soc R Ser A 365:1993–2028

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H–H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, p 599

    Google Scholar 

  • Nuñez MN, Solman S, Cabré M (2006) Mean climate and annual cycle in a regional climate change experiment over Southern South America. II: climate change scenarios (2081–2090). In: Proceedings of 8 ICSHMO, 24–28 April 2006. Foz do Iguacu, Brazil, pp 325–331

  • Nuñez MN, Solman SA, Cabré MF (2008) Regional Climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn. doi:10.1007/s00382-008-0449-8

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2009) Climate downscaling over South America for 1961–1970 using the Eta Model. Theor Appl Climatol. doi:10.1007/s00704-009-0123-z

  • Pope V, Gallani M, Rowtree P, Stratton R (2000) The impact o f new physical parameterizations in the Hadley Centre climate model. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Schaeffer R, Szklo AS, Lucena AF, De Souza RR, Borba BM, Costa I, Pereira Júnior A, da Cunha SHF (2008) Mudanças Climáticas e Segurança Energética no Brasil. COPPE/UFRJ, RJ, 2008. http://www.ppe.ufrj.br

  • Soares W, Marengo J (2008) Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int J Climatol. doi:10.1002/joc.1800 http://www.interscience.wiley.com

  • Solman SA, Nuñez MN (1999) Local estimates of global climate change: a statistical downscaling approach. Int J Climatol 19:835–861. doi:10.1002/(SICI)1097-0088(19990630)19:8

    Article  Google Scholar 

  • Solman SA, Nuñez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533–552. doi:10.1007/s00382-007-0304-3

    Article  Google Scholar 

  • Sorensson A, Menendez CG (2010) Summer soil–precipitation coupling in South America. Tellus. doi:10.1111/j.1600-0870.2010.00468.x

  • Sorensson A, Menéndez CG, Samuelsson P, Willén U, Hansson U (2010a) Soil–precipitation feedbacks during the South American Monsoon as simulated by a regional climate model. Clim Change 98:429–447. doi:10.1007/s10584-009-9740-x

    Article  Google Scholar 

  • Sorensson A, Menendez CG, Ruscica R, Alexander P, Samuelsson P, Willen U (2010b) Projected precipitation changes in South America: a dynamical downscaling within CLARIS. Meteorol Z 19(4):347–355

    Article  Google Scholar 

  • Stainforth DA et al (2005) Uncertainty in projections of the climate response to rising levels of greenhouse gases. Nature 433:403–406. doi:10.1038/nature03301

    Article  Google Scholar 

  • Trivedi MR, Mitchell AW, Mardas N, Parker C, Watson JE, Nobre AD (2009) REDD and PINC: a new policy framework to fund tropical forests as global “eco-utilities”, IOP. Conf Ser Earth Environ Sci 8:012005. doi:10.1088/1755-1315/8/1/012005

    Article  Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021

  • Zeng N, Yoon Y, Marengo JA, Subrmanaiam A, Nobre CA, Mariotti N (2008) Causes and impacts of the 2005 Amazon drought. Environ Res 3:1–6

    Google Scholar 

  • Zhao Q, Black TL, Baldwin ME (1997) Implementation of the cloud prediction scheme in the Eta Model at NCEP. Weather Forecast 12:697–712

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the UNDP Project BRA/05/G31 and the FCO GOF-Dangerous Climate Change DCC project from the UK. JM and SC were funded by the Brazilian National Research Council CNPq. Additional funds came from the Brazilian programs Rede-CLIMA, the National Institute of Science and Technology for Climate Change (INCT-CC), and from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement no. 212492 (CLARIS LPB—A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin), and the FAPESP-Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation options project (Ref. 2008/58161-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Marengo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marengo, J.A., Chou, S.C., Kay, G. et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38, 1829–1848 (2012). https://doi.org/10.1007/s00382-011-1155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1155-5

Keywords

Navigation