Skip to main content

Advertisement

Log in

Response of the South Atlantic circulation to an abrupt collapse of the Atlantic meridional overturning circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1 Sv; 1 Sv = 106 m3 s−1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bard E, Rickaby REM (2009) Migration of the subtropical front as a modulator of glacial climate. Nature 460:380–384

    Article  Google Scholar 

  • Biastoch A, Böning CW, Lutjeharms JRE (2008) Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature 456:489–492

    Article  Google Scholar 

  • Biastoch A, Böning CW, Schwarzkopf FU, Lutjeharms JRE (2009) Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462:495–499

    Article  Google Scholar 

  • Boebel O, Lutjeharms JRE, Schmid C, Zenk W, Rossby T, Barron CN (2003) The Cape Cauldron, a regime of turbulent inter-ocean exchange. Deep Sea Res 50:57–86

    Article  Google Scholar 

  • Chang P, Zhang R, Hazeleger W, Wen C, Wan X, Ji L, Haarsma RJ, Breugem WP, Seidel H (2008) Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat Geosci 1:444–448

    Article  Google Scholar 

  • Cheng W, Bitz CM, Chiang JCH (2007) Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Geophys Monogr 1973:295–314

    Google Scholar 

  • Clauzet G, Wainer I, Lazar A, Brady E, Otto-Bliesner B (2007) A numerical study of the South Atlantic circulation at the last glacial maximum. Palaeogeogr Palaeoclimatol Palaeoecol 253:509–528

    Article  Google Scholar 

  • Cushman-Roisin B (1987) On the role of heat flux in the Gulf Stream-Sargasso Sea subtropical gyre system. J Phys Oceanogr 17:2189–2202

    Article  Google Scholar 

  • de Ruijter WPM, Biastoch A, Drijfhout SS, Lutjeharms JRE, Matano RP, Pichevin T, van Leeuwen PJ, Weijer W (1999) Indian-Atlantic interocean exchange: dynamics, estimation and impact. J Geophys Res 104:20885–20910

    Article  Google Scholar 

  • de Steur L, van Leeuwen PJ, Drijfhout SS (2004) Tracer leakage from modeled Agulhas rings. J Phys Oceanogr 34:1387–1399

    Article  Google Scholar 

  • Dong BW, Sutton RT (2002) Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29. doi:10.1029/2002GL015229

  • Downes SM, Bindoff NL, Rintoul SR (2009) Impacts of climate change on the subduction of mode and intermediate water masses in the southern ocean. J Clim 22:3289–3302

    Article  Google Scholar 

  • Drijfhout SS (2010) The atmospheric response to a THC collapse: scaling relations for the Hadley circulation and the nonlinear response in a coupled climate model. J Clim 23:757–774

    Article  Google Scholar 

  • Drijfhout SS, de Vries P, Döös K, Coward AC (2003) Impact of eddy-induced transport on the Lagrangian structure of the upper branch of the thermohaline circulation. J Phys Oceanogr 33:2141–2155

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–456

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J Clim 16:696–705

    Article  Google Scholar 

  • Garzoli SL, Gordon AL (1996) Origins and variability of the Benguela Current. J Geophys Res 101:897–906

    Article  Google Scholar 

  • Gordon AL (1985) Indian-Atlantic transfer of thermocline water at the Agulhas retroflection. Science 227:1030–1033

    Article  Google Scholar 

  • Haarsma RJ, Campos E, Hazeleger W, Severijns C (2008) Influence of the meridional overturning circulation on tropical Atlantic climate and variability. J Clim 21:1403–1416

    Article  Google Scholar 

  • Huisman SE, den Toom M, Dijkstra HA, Drijfhout SS (2010) An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J Phys Oceanogr 40:551–567

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2000) In: Nakicenovic N et al (eds) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

  • Jackett DR, McDougall TJ (1997) A neutral density variable for the world’s oceans. J Phys Oceanogr 27:237–263

    Article  Google Scholar 

  • Latif M, Böning C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U, Madec G (2006) Is the thermohaline circulation changing? J Clim 19:4631–4637

    Article  Google Scholar 

  • Laurian A, Drijfhout SS, Hazeleger W, van Dorland R (2009a) Global surface cooling: the atmospheric fast feedback response to a collapse of the thermohaline circulation, Geophys Res Lett 36. doi:10.1029/2009GL040938

  • Laurian A, Drijfhout SS, Hazeleger W, van den Hurk B (2009b) Response of the Western European climate to a collapse of the thermohaline circulation. Clim Dyn. doi:10.1007/s00382-008-0513-4

  • Lee S, Wang C (2008) Tropical Atlantic decadal oscillation and its potential impact on the equatorial atmosphere-ocean dynamics: a simple model study. J Phys Oceanogr 38:193–212

    Article  Google Scholar 

  • Luyten J, Stommel H (1986) Gyres driven by combined wind and buoyancy flux. J Phys Oceanogr 16:1551–1560

    Article  Google Scholar 

  • Marshall JC, Nurser AJG, Williams RG (1993) Inferring the subduction rate and period over the North Atlantic. J Phys Oceanogr 23:1315–1329

    Article  Google Scholar 

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    Article  Google Scholar 

  • Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. doi:10.1029/2005GL023655

    Article  Google Scholar 

  • Richardson PL (2007) Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters. Deep Sea Res Part I 54:1361–1389

    Article  Google Scholar 

  • Ridgway KR, Dunn JR (2007) Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys Res Lett 34:L13612. doi:10.1029/2007GL030392

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I: model description. Tech. Rep. 349. Max-Planck-Institut für Meteorologie, Hamburg, Germany

    Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32. doi:10.1029/2005GL024368

  • Schouten MW, de Ruijter WPM, van Leeuwen PJ, Lutjeharms JRE (2000) Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean. J Geophys Res 105:21913–21925

    Article  Google Scholar 

  • Sloyan BM, Rintoul SR (2001) The southern ocean limb of the global deep overturning circulation. J Phys Oceanogr 31:143–173

    Article  Google Scholar 

  • Son SW, Tandon N, Polvani L, Waugh D (2009) Ozone hole and Southern Hemisphere climate change. Geophys Res Lett 36. doi:10.1029/GL038671

  • Speich S, Blanke B, Cai W (2007) Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys Res Lett 34:L23614. doi:10.1029/2007GL031583

    Article  Google Scholar 

  • Sterl A, Severijns C, Dijkstra H, Hazeleger W, van Oldenborgh GJ, van den Broeke M, Burgers G, van den Hurk B, van Leeuwen PJ, van Velthoven P (2008) When can we expect extremely high surface temperature? Geophys Res Lett. doi:10.1029/2008GL034071

  • Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. J Geophys Res 104(20):20863-20883

    Article  Google Scholar 

  • van Sebille E, Biastoch A, van Leeuwen PJ, de Ruijter WPM (2009) A weaker Agulhas Current leads to more Agulhas leakage. Geophys Res Lett 36:L03601. doi:10.1029/2008GL036614

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Chang 54:251–267

    Article  Google Scholar 

  • Weber SL, Drijfhout SS, Abe-Ouchi A, Curcifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Clim Past 3:51–64

    Article  Google Scholar 

  • Weijer W, de Ruijter WPM, Sterl A, Drijfhout SS (2002) Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy. Glob Planet Chang 34:293–311

    Article  Google Scholar 

  • Yin J, Stouffer RJ (2007) Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. J Clim 20:4293–4315

    Article  Google Scholar 

Download references

Acknowledgments

This work was granted by the Dutch Ministry of Transport, Public Works and Water Management. The ESSENCE project, lead by Wilco Hazeleger (KNMI) and Henk Dijkstra (UU/IMAU), was carried out with support of DEISA, HLRS, SARA, and NCF (through NCF projects NRG-2006.06, CAVE-60-023 and SG-06-267). We thank the DEISA Consortium (co-funded by the EU, FP6 projects 508830/031513) for support within the DEISA Extreme Computing Initiative (http://www.deisa.org). The authors thank Andreas Sterl and Camiel Severijns (KNMI), and HLRS and SARA staff for technical support. We greatly appreciated the discussions with B. Sloyan and J. Mignot. We thank two anonymous reviewers for their insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audine Laurian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurian, A., Drijfhout, S.S. Response of the South Atlantic circulation to an abrupt collapse of the Atlantic meridional overturning circulation. Clim Dyn 37, 521–530 (2011). https://doi.org/10.1007/s00382-010-0890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0890-3

Keywords

Navigation