Skip to main content

Advertisement

Log in

Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Niño-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air–sea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial “cold Kelvin wave” response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Niño onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Niño34 SST index several months in advance before the El Niño onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842

    Article  Google Scholar 

  • Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res 108:4732. doi:10.1029/2003JD003805

    Article  Google Scholar 

  • Annamalai H, Xie S-P, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319

    Article  Google Scholar 

  • Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330

    Article  Google Scholar 

  • Bretherton C, Smith C, Wallace J (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Carleton AM (2003) Atmospheric teleconnections involving the Southern Ocean. J Geophys Res 108(C4):8080. doi:10.1029/2000JC000379

    Google Scholar 

  • Carril AF, Navarra A (2001) Low-frequency variability of the Antarctic circumpolar wave. Geophys Res Lett 28:4623–4626

    Article  Google Scholar 

  • Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: the connection to monthly atmospheric circulation. J Clim 5:354–369

    Article  Google Scholar 

  • Chang P et al (2006) Climate fluctuations of tropical coupled systems—the role of ocean dynamics. J Clim 19:5122–5174

    Article  Google Scholar 

  • Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño-Southern Oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Chiodi AM, Harrison E (2007) Mechanisms of summertime subtropical Southern Indian Ocean sea surface temperature variability: on the importance of humidity anomalies and the meridional advection of water vapor. J Clim 20:4835–4852

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space–time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30:52.1–52.4

    Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) A seasonal-trend decomposition procedure based on loess (with discussion). J Off Stat 6:3–73

    Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Deser C, Alexander MA, Timlin MS (2003) On the persistence of sea surface temperature anomalies in midlatitudes. J Clim 16:57–72

    Article  Google Scholar 

  • Dominiak S, Terray P (2005) Improvement of ENSO prediction using a linear regression model with a Southern Indian Ocean sea surface temperature predictor. Geophys Res Lett 32:L18702. doi:10.1029/2005GL023153

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33:L11701. doi:10.1029/2006GL025871

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153

    Article  Google Scholar 

  • England MH, Ummenhofer CC, Santoso A (2006) Interannual rainfall extremes over southwest West Australia linked to Indian Ocean climate variability. J Clim 19:1948–1969

    Article  Google Scholar 

  • Fauchereau N, Trzaska S, Richard Y, Roucou P, Camberlin P (2003) Sea-surface temperature co-variability in the southern Atlantic and Indian oceans and its connections with the atmospheric circulation in the Southern Hemisphere. Int J Climatol 23:663–677

    Article  Google Scholar 

  • Florenchie P, Reason CJC, Lutjeharms JRE, Rouault M, Roy C, Masson S (2004) Evolution of interannual warm and cold events in the Southeast Atlantic Ocean. J Clim 17:2318–2334

    Article  Google Scholar 

  • Flugel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Q J Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gillet NP, Thomson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275

    Article  Google Scholar 

  • Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence and convection over tropical Oceans. Science 238:657–659

    Article  Google Scholar 

  • Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–4395

    Article  Google Scholar 

  • Hermes JC, Reason CJC (2005) Ocean model diagnosis of interannual coevolving SST variability in the South Indian and South Atlantic Oceans. J Clim 18:2864–2882

    Article  Google Scholar 

  • Hobbs WR, Raphael MN (2007) A representative time-series for the Southern Hemisphere zonal wave 1. Geophys Res Lett 34:L05702

    Article  Google Scholar 

  • Huang B, Shukla J (2006) Interannual SST variability in the southern subtropical and extra-tropical ocean. COLA Tech. Report, 223, 20 pp

    Google Scholar 

  • Huang B, Shukla J (2007) Interannual variability of the south indian ocean in observations and a coupled model. COLA Tech. Report, 235, 49 pp

    Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172. doi:10.1038/ngeo760

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567

    Article  Google Scholar 

  • Jin D, Kirtman B (2009) Why the Southern Hemisphere ENSO responses lead ENSO. J Geophys Res 114:D23101. doi:10.1029/2009JD012657

    Article  Google Scholar 

  • Jin EK et al (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664 Co authors

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woolen J, Potter J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Karoly DJ (1989) Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2:1239–1252

    Article  Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29:2125. doi:10.1029/2002GL015924

    Article  Google Scholar 

  • Kidson JW, Renwick JA (2002) The southern hemisphere evolution of ENSO during 1981–99. J Clim 15:847–863

    Article  Google Scholar 

  • Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Article  Google Scholar 

  • Kug J-S, Il An S-, Jin F-F, Kang I-S (2005) Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys Res Lett 32:L05706. doi:10.1029/2004GL021674

    Article  Google Scholar 

  • Kug JS, Kirtman B, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean in an interactive ensemble coupled model. J Clim 19:6371–6381

    Article  Google Scholar 

  • Kwok R, Comiso JC (2002) Southern ocean climate and sea ice anomalies associated with the southern oscillation. J Clim 15:487–501

    Article  Google Scholar 

  • L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287

    Article  Google Scholar 

  • Lau KM, Chan PH (1988) Intraseasonal and interannual variations of tropical convection: a possible link between the 40–50 day oscillation and ENSO. J Atmos Sci 45:506–521

    Article  Google Scholar 

  • Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309

    Article  Google Scholar 

  • Lau NC, Nath MJ (2003) Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20

    Article  Google Scholar 

  • Lau KM, Wu HT, Bony S (1997) The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J Clim 10:381–392

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J Atmos Sci 44:2418–2436

    Article  Google Scholar 

  • Luo JJ, Zhang R, Behera S, Masumoto Y, Jin FF, Lukas R, Yamagata T (2009) Interaction between El Niño and Extreme Indian Ocean Dipole. J Clim (in press)

  • McPhaden MJ, Zhang X, Hendon HH, Wheeler MC (2006) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33:L16702. doi:10.1029/2006GL026786

    Article  Google Scholar 

  • Mo KC (2000) Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610

    Article  Google Scholar 

  • Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220

    Article  Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2009) Climate variability in the Southern Indian Ocean as revealed by self-organizing maps. Clim Dyn (submitted)

  • Penland C, Matrasova L (2006) Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J Clim 19:5796–5815

    Article  Google Scholar 

  • Penland C, Matrasova L (2008) A Southern Hemisphere footprint in American Midwest precipitation. Geophys Res Lett 35:L09703. doi:10.1029/2008GL033612

    Article  Google Scholar 

  • Peterson R, White WB (1998) Slow oceanic teleconnections linking tropical ENSO and the Antarctic circumpolar wave. J Geophys Res 103:24573–24583

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Renwick JA (2005) Persistent positive anomalies in the Southern Hemisphere circulation. J Clim 133:977–988

    Google Scholar 

  • Ribera P, Mann ME (2003) ENSO related variability in the Southern Hemisphere, 1948–2000. Geophys Res Lett. doi:10.1029/2002GL015818

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett. doi:10.1029/2009GL040048

  • Sara S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  • Sterl A, Hazeleger W (2003) Coupled variability and air–sea interaction in the South Atlantic Ocean. Clim Dyn 21:559–571

    Article  Google Scholar 

  • Suzuki R, Behera SK, Iizuka S, Yamagata T (2004) Indian Ocean subtropical dipole simulated using a coupled general circulation model. J Geophy Res 109. doi:10.1029/2003JC001974

  • Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Niño-Southern Oscillation: a new perspective. J Clim 18:1351–1368

    Article  Google Scholar 

  • Terray P, Dominiak S, Delecluse P (2005) Role of the southern Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Clim Dyn 24:169–195. doi:10.1007/s00382-004-0480-3

    Article  Google Scholar 

  • Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO-dipole variability in a coupled ocean-atmosphere model. Clim Dyn 28:553–580. doi:10.1007/s00382-006-0192-y

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I. Month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Toniazzo T (2009) Climate variability in the south-eastern tropical Pacific and its relation with ENSO: a GCM study. Clim Dyn. doi:10.1007/s00382-009-0602-z

  • Trenberth KE, Mo KC (1985) Blocking in the Southern Hemisphere. Mon Weather Rev 113:3–21

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modelling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14 291–14 324

    Article  Google Scholar 

  • Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) The evolution of ENSO and global atmospheric surface temperatures. J Geophys Res 107(D8). doi:10.1029/2000JD000298

  • Tziperman E, Yu L (2007) Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J Clim 20:2760–2768

    Article  Google Scholar 

  • Uppala S et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012 Coauthors

    Article  Google Scholar 

  • Van Loon H (1984) The Southern Oscillation. Part III. Associations with the trades and with the trough in the westerlies of the South Pacific Ocean. Mon Weather Rev 112:947–954

    Article  Google Scholar 

  • Van Loon H, Shea DJ (1987) The Southern Oscillation. Part VI. Anomalies of sea level pressure on the Southern Hemisphere and of Pacific sea surface temperature during the development of a warm event. Mon Weather Rev 115:370–379

    Article  Google Scholar 

  • Venegas SA, Mysak LA, Straub DN (1997) Atmosphere–ocean coupled variability in the South Atlantic. J Clim 10:2904–2920

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the pacific: the role of thermodynamic coupling and seasonality. J Clim 22:518–534

    Article  Google Scholar 

  • Wang C (2006) An overlooked feature of tropical climate: inter-Pacific–Atlantic variability. Geophys Res Lett 33:L12702. doi:10.1029/2006GL026324

    Article  Google Scholar 

  • Watanabe M, Jin F-F (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29. doi:10.1029/2001GL014318

  • Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  • White WB, Annis J (2004) Influence of the Antarctic Circumpolar Wave on El Niño and its multidecadal changes from 1950–2001. J Geophys Res 109(C0):6019. doi:10.1029/2002JC001666

    Article  Google Scholar 

  • White WB, Chen S-C, Allan RJ, Stone RC (2002) Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño-Southern Oscillation Wave. J Geophys Res 107(C10):3165. doi:10.1029/2000JC000581

    Article  Google Scholar 

  • Wright PB (1986) Precursors of the Southern Oscillation. J Climatol 6:17–30

    Article  Google Scholar 

  • Wu RG, Kirtman BP (2004) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031

    Article  Google Scholar 

  • Xie S-P, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350

    Google Scholar 

  • Yu J-Y, Mechoso CR, McWilliams JC, Arakawa A (2002) Impacts of the Indian Ocean on the ENSO cycle. Geophys Res Lett 29:1204. doi:10.1029/2001GL014098

    Article  Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade Global Flux Datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report OA-2008-01. Woods Hole, MA, 64 pp

  • Zhang Y, Norris JR, Wallace JM (1998) Seasonality of large-scale atmosphere-ocean interaction over the North Pacific. J Clim 11:2473–2481

    Article  Google Scholar 

Download references

Acknowledgments

The comments of two anonymous reviewers and the Editor, Ben Kirtman, improved the paper. Financial support from the Indo-French CEFIPRA project (No. 3907/1), the French program “Les Enveloppes Fluides et l’Environnement” (LEFE: project MISSTERRE) and the ENSEMBLES European project (contract GOCE-CT-2003-505539) are acknowledged. The Hadley SLP and SST, NCAR/NCEP reanalysis and NOAA OLR datasets were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at URL: http://www.cdc.noaa.gov/. The OAFLUX products are obtained from the Woods Hole Oceanographic Institute through ftp://ftp.whoi.edu/pub/science/oaflux/data. Graphics have been prepared using the SAXO package of Sébastien Masson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Terray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terray, P. Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn 36, 2171–2199 (2011). https://doi.org/10.1007/s00382-010-0825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0825-z

Keywords

Navigation