Skip to main content

Advertisement

Log in

Tidal mixing in the Indonesian Seas and its effect on the tropical climate system

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The sensitivity of the tropical climate to tidal mixing in the Indonesian Archipelago (IA) is investigated using a coupled general circulation model. It is shown that the introduction of tidal mixing considerably improves water masses properties in the IA, generating fresh and cold anomalies in the thermocline and salty and cold anomalies at the surface. The subsurface fresh anomalies are advected in the Indian Ocean thermocline and ultimately surface to freshen the western part of the basin whereas surface salty anomalies are advected in the Leuwin current to salt waters along the Australian coast. The ~0.5°C surface cooling in the IA reduces by 20% the overlying deep convection. This improves both the amount and structure of the rainfall and weakens the wind convergence over the IA, relaxes the equatorial Pacific trade winds and strengthens the winds along Java coast. These wind changes causes the thermocline to be deeper in the eastern equatorial Pacific and shallower in the eastern Indian Ocean. The El Nino Southern Oscillation (ENSO) amplitude is therefore slightly reduced while the Indian Ocean Dipole/Zonal Mode (IODZM) variability increases. IODZM precursors, related to ENSO events the preceding winter in this model, are also shown to be more efficient in promoting an IODZM thanks to an enhanced wind/thermocline coupling. Changes in the coupled system in response tidal mixing are as large as those found when closing the Indonesian Throughflow, emphasizing the key role of IA on the Indo-Pacific climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Chang P, Yamagata T, Schopf P, Behera SK, Carton J, Kessler WS, Meyers G, Qu T, Schott F, Shetye S (2006) Climate fluctuations of tropical coupled systems—the role of Ocean dynamics. J Clim 19(20):5122

    Article  Google Scholar 

  • Clement AC, Seager R, Murtugudde R (2005) Why are there tropical warm pools? J Clim 18:5294–5311

    Article  Google Scholar 

  • Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Model 17(1):28–48

    Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge, p 582

    Google Scholar 

  • Ffield A, Gordon AL (1992) Vertical mixing in the Indonesian Thermocline. J Phys Oceanogr 22(2):184–195. doi:10.1175/1520-0485

    Google Scholar 

  • Ffield A, Gordon A (1996) Tidal mixing signatures in the Indonesian seas. J Phys Oceanogr 26:1924–1937

    Google Scholar 

  • Fieux M, Andrie C, Delecluse P, Ilahude AG, Kartavtseff A, Mantisi F, Molcard R, Swallow JC (1994) Measurement within the Pacific-Indian Ocean throughflow region. Deep-Sea Res I 41:1091–1130

    Article  Google Scholar 

  • Fischer AS, Terray P, Guikyardi E, Gualdi S, Delecluse P (2005) Two independent Triggers for the Indian Ocean/zonal Mode in a coupled GCM. J Clim 18:3428–3449

    Article  Google Scholar 

  • Gerkema T, Lam F-PA, Maas LRM (2004) Internal tides in the Bay of Biscay: conversion rates and seasonal effects. Deep Sea Res Part II 51:2995–3008

    Article  Google Scholar 

  • Gordon AL, McClean J (1999) Thermohaline stratification of the Indonesian Seas, model and observations. J Phys Oceanogr 29:198–216

    Article  Google Scholar 

  • Gordon AL, Susanto RD (2001) Banda Sea surface layer divergence. Ocean Dyn 52:2–10

    Article  Google Scholar 

  • Gordon AL, Susanto RD, Ffield AL (1999) Throughflow within Makassar Strait. Geophys Res Lett 26:3325–3328

    Article  Google Scholar 

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon Weather Rev 118(7):1483–1506

    Article  Google Scholar 

  • Gregory D, Kershaw R, Inness PM (1997) Parametrization of momentum transport by convection. II: tests in single column and general circulation models. Q J R Meteor Soc 123:1153–1183

    Article  Google Scholar 

  • Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003) The interannual variability in the Tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582

    Google Scholar 

  • Hautala S, Reid JL, Bray NA (1996) The distribution and mixing of Pacific water masses in the Indonesian Seas. J Geophys Res 101(C5):12375–12390

    Google Scholar 

  • Hautala SL, Sprintall J, Potemra JT, Chong JC, Pandoe W, Bray N, Ilahude AG (2001) Velocity structure and transport of the Indonesian Throughflow in the major straits restricting flow into the Indian Ocean. J Geophys Res 106(C9):19527–19546

    Google Scholar 

  • Hirst AC, Godfrey JS (1993) The role of the Indonesian Throughflow in a global ocean GCM. J Phys Oceanogr 23:1057–1086

    Article  Google Scholar 

  • Jochum M, Potemra J (2008) Sensitivity of tropical rainfall to Banda Sea diffusivity in the community climate system model. J Clim 21:6445–6454

    Article  Google Scholar 

  • Kamenkovich VM, Burnett WH, Gordon AI, Mellor GL (2003) The Pacific/Indian Ocean pressure difference and its influence on the Indonesian Seas circulation: Part II—the study with specified sea-surface heights. J Mar Res 61(5):613–634

    Article  Google Scholar 

  • Koch-Larrouy, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific Water into Indonesian Throughflow water by internal tidal mixing. Geophys Res Lett 34:L04604. doi:10.1029/2006GL028405

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Iudicone D, Molcard R, Atmadipoera A (2008a) Quantification of the mixing process in the transformation of water masses in the Indonesian Seas. Ocean Dyn (submitted)

  • Koch-Larrouy A, Madec G, Blanke B, Molcard R (2008b) Quantification of the water paths and exchanges in the Indonesian archipelago. Ocean Dyn (submitted)

  • Lau N-C, Nath MJ (2004) Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 17:245–265

    Article  Google Scholar 

  • Lengaigne M, Madec G, Menkes C, Alory G (2003) Impact of isopycnal mixing on the tropical ocean circulation. J Geophys Res 108(C11):3345. doi:10.1029/2002JC001704

    Google Scholar 

  • Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P, Cole J, Slingo J (2004) Triggering of El Niño by westerly wind events in a coupled general circulation model. Clim Dyn 23:601–620. doi:10.1007/s00382-004-0457-2

    Article  Google Scholar 

  • Lengaigne M, Boulanger JP, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19:1850–1868. doi:10.1175/JCLI3706.1

    Article  Google Scholar 

  • Li T, Wang B, Chang CP, Zhang Y (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135

    Article  Google Scholar 

  • Lin JL (2007) The Double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Luo J-J, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variationas simulated by a coupled GCM. Geophys Res Lett 30(24):2250. doi:10.1029/2003GL018649

    Article  Google Scholar 

  • Luo J-J, Masson S, Behera S, Yamagata T (2007) Experimental forecasts of Indian Ocean Dipole using a coupled OAGCM. J Clim 20(10):2178–2190

    Article  Google Scholar 

  • Lyard F et al (2002) Energy budget of the tidal hydrodynamic model fes99. In: C. Le Provosts’ talk: “Ocean tides after a decade of high precision satellite altimetry”, SWT Jason 1, Arles, 2003

  • Madec G (2008) “NEMO reference manual, ocean dynamics component: NEMO-OPA. Preliminary version”. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619

  • Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 Ocean general circulation model reference manual. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 11, 91 pp

  • Meng X, Wu D, Hu R, Lan J (2004) The interdecadal variation of Indonesian Throughflow and its mechanism. Chin Sci Bull 2004 49(19):2058–2067

    Article  Google Scholar 

  • Meyers G, Bailey RJ, Worby AP (1995) Geostrophic transport of Indonesian throughflow. Deep-Sea Res Part I 42:1163–1174

    Article  Google Scholar 

  • Molcard RM, Fieux M, Syamsudin F (2001) The throughflow within Ombai Strait. Deep-Sea Res I 48:1237–1253

    Article  Google Scholar 

  • Murray SP, Arief D (1988) Throughflow into the Indian Ocean through the Lombok Strait, January 1985–January 1986. Nature 333:444–447

    Article  Google Scholar 

  • Murtugudde R, Busalacchi AJ, Beauchamp J (1998) Seasonal-to-interannual effects of the Indonesian throughflow on the tropical Indo-Pacific Basin. J Geophys Res 103(21):425–441

    Google Scholar 

  • Murtugudde R, McCreary J, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–98. J Geophys Res 105:3295–3306

    Article  Google Scholar 

  • Neale R, Slingo J (2003) The maritime continent and its role in the global climate: AGCM study. J Clim 16:834–848

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, Tech. Memo. 206. Eur. Cent. for Medium-Range Weather Forecasts, Reading, UK

    Google Scholar 

  • Pope V, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Potemra JT, Schneider N (2005) Influence of low-frequency Indonesian throughflow transport on temperatures in the Indian Ocean in a coupled model. J Clim (submitted)

  • Potemra JT, Lukas R, Mitchum GT (1997) Large scale estimation of transport from the Pacific to the Indian Ocean. J Geophys Res 102:27795–27812

    Article  Google Scholar 

  • Robertson R, Ffield A (2005) M2 baroclinic tides in the Indonesian Seas. Oceanogr 18:62–73

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: Model description. MPI-Report 349

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution. Max Planck Institute for Meteorology, Report No. 354

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and ocean, chapter 10. Springer, New York, pp 157–185

    Chapter  Google Scholar 

  • Schiller A (2004) Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Model 6(1):31–49

    Article  Google Scholar 

  • Schiller A, Fiedler R (2007) Explicit tidal forcing in an ocean general circulation model. Geophys Res Lett 34:L03611. doi:10.1029/2006GL028363

  • Schiller A, Godfrey JS, McIntosh PC, Meyers G, Wijffels SE (1998) Seasonal near-surface dynamics and thermodynamics of the Indian Ocean and Indonesian Throughflow in a global ocean circulation model. J Phys Oceanogr 28:2288–2312

    Article  Google Scholar 

  • Schneider N (1998) The Indonesian Throughflow and the global climate system. J Clim 11:676–689

    Article  Google Scholar 

  • Song Q, Gordon AL (2004) Significance of the vertical profile of the Indonesian Throughflow transport to the Indian Ocean. Geophys Res Lett 31:L16307. doi:10.1029/2004GL020360

    Article  Google Scholar 

  • Song Q, Vecchi GA, Rosati AJ (2007) The role of the Indonesian Throughflow in the Indo-Pacific climate variability in the GFDL coupled climate model. J Clim 20(11):2434

    Article  Google Scholar 

  • Spencer H, Slingo JM (2003) The simulation of peak and delayed ENSO teleconnections. J Clim 16(11):1757–1774

    Article  Google Scholar 

  • Sprintall J, Wijffels S, Molcard R, Jaya I (2008) Transport variability in the exit passages of the Indonesian Throughflow. J Geophys Res (submitted)

  • St. Laurent LC, Simmons HL, Jayne SR (2002) Estimates of tidally driven enhanced mixing in the Deep Ocean. Geophys Res Lett 29:101029

  • Susanto RD, Gordon AL (2005) Velocity and transport of the Makassar Strait Throughflow. J Geophys Res 110, Jan C01005. doi:10.1029/2004JC002425

  • Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO-dipole variability in a coupled ocean/atmosphere model. Clim Dyn 28(6):553

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea–ice–ocean model. Ocean Modell 8(2005):175–201

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM support initiative report No 3, 64 pp

  • Valcke S, Terray L, Piacentini A (2000) Oasis 2.4, Ocean atmosphere sea ice soil: user’s guide. Technical report TR/CMGC/00/10, CERFACS, Toulouse, France

  • Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhadenet MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Wajsowicz RC, Schneider EK (2001) The Indonesian throughflow’s effect on global climate determined from the COLA coupled climate system. J Clim 14:3029–3042

    Article  Google Scholar 

  • Wang B (1995) Interdecadal changes in El Nino onset in the last four decades. J Clim 8:267–285

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Koch-Larrouy.

Appendix

Appendix

1.1 SINTEX F1 coupled model

The other model used in this paper is an upgraded version of SINTEX-F1 ocean atmosphere coupled model (Luo et al. 2003, 2007). This new version has been developed in a frame of EU-Japan collaborations between LOCEAN, MPImet and FRCGC. Its oceanic component is NEMO (http://www.locean-ipsl.upmc.fr/NEMO) with OPA9.2 (Madec 2008; Madec et al. 1998) for the oceanic dynamical core and LIM2 (Timmermann et al. 2005) for sea–ice model. We use the configuration known as “ORCA05” which is a tri-polar global grid with a resolution of 0.5°′ 0.5°cos (latitude). Vertical resolution and mixing are similar to OPA8.2. The atmospheric component is ECHAM5.2 (Roeckner et al. 2003, 2004) with a T106 horizontal resolution and 31 hybrid sigma-pressure levels. A mass flux scheme (Tiedtke 1989) is applied for cumulus convection with modifications for penetrative convection according to Nordeng 1994. The coupling information, without flux correction, is exchanged every two hours by means of the OASIS 3 coupler (Valcke 2006). This higher resolution coupled SINTEX model has been run for 50 years only, due to computational expense.

The surface response to tidal mixing in the SINTEX model is comparable in structure and amplitude to the one found in HadOPA (Fig. 9; Table 2). Locally, the SST and precipitations display the same response in amplitude (−0.5°C, −1.5 mm/day) in better agreement with observations (Table 3). The wind convergence decreasing and the thermocline flattening are comparable in both models. The main differences concern SSS anomaly amplitude. Indeed the structures are similar in both models but the amplitude both local and remote are smaller for the SINTEX model. This presumably due to the subsurface salinity maximum less intense than for the HadOPA model, which bring less salty water in the surface and a smaller anomaly in the subsurface (not shown).

Fig. 9
figure 9

SST top, rain middle, SSS bottom anomalies between S-Ti and S-noTi experiments. The black box shows the Indonesian domain over which averages are computed in Table 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch-Larrouy, A., Lengaigne, M., Terray, P. et al. Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim Dyn 34, 891–904 (2010). https://doi.org/10.1007/s00382-009-0642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0642-4

Keywords

Navigation