Skip to main content

Advertisement

Log in

Future changes in daily summer temperature variability: driving processes and role for temperature extremes

Climate Dynamics Aims and scope Submit manuscript

Abstract

Anthropogenic greenhouse gas emissions are expected to lead to more frequent and intense summer temperature extremes, not only due to the mean warming itself, but also due to changes in temperature variability. To test this hypothesis, we analyse daily output of ten PRUDENCE regional climate model scenarios over Europe for the 2071–2100 period. The models project more frequent temperature extremes particularly over the Mediterranean and the transitional climate zone (TCZ, between the Mediterranean to the south and the Baltic Sea to the north). The projected warming of the uppermost percentiles of daily summer temperatures is found to be largest over France (in the region of maximum variability increase) rather than the Mediterranean (where the mean warming is largest). The underlying changes in temperature variability may arise from changes in (1) interannual temperature variability, (2) intraseasonal variability, and (3) the seasonal cycle. We present a methodology to decompose the total daily variability into these three components. Over France and depending upon the model, the total daily summer temperature variability is projected to significantly increase by 20–40% as a result of increases in all three components: interannual variability (30–95%), seasonal variability (35–105%), and intraseasonal variability (10–30%). Variability changes in northern and southern Europe are substantially smaller. Over France and parts of the TCZ, the models simulate a progressive warming within the summer season (corresponding to an increase in seasonal variability), with the projected temperature change in August exceeding that in June by 2–3 K. Thus, the most distinct warming is superimposed upon the maximum of the current seasonal cycle, leading to a higher intensity of extremes and an extension of the summer period (enabling extreme temperatures and heat waves even in September). The processes driving the variability changes are different for the three components but generally relate to enhanced land–atmosphere coupling and/or increased variability of surface net radiation, accompanied by a strong reduction of cloudiness, atmospheric circulation changes and a progressive depletion of soil moisture within the summer season. The relative contribution of these processes differs substantially between models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Tank AK, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111

  • Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn 26. doi:10.1007/s00382-005-0097-1

  • Bringfelt B, Räisänen J, Gollvik S, Lindström G, Graham LP, Ullerstig A (2001) The land surface treatment for the Rossby centre regional atmospheric climate model version 2 (RCA2). Reports meteorology and climatology, vol 98, Swedish Meteorological and Hydrological Institute, Norrköping

  • Buonomo E, Jones R, Huntingford C, Hannaford J (2007) On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q J R Meteorol Soc 133:65–81

    Article  Google Scholar 

  • Castro M, Fernández C, Gaertner M (1993) Mathematics, climate and environment. Description of a meso-scale atmospheric numerical model

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30

    Article  Google Scholar 

  • Christensen J, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Technical report, DMI Technical Report 96-4

  • Clark RT, Brown SJ, Murphy JM (2006) Modeling Northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435

    Article  Google Scholar 

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203

    Article  Google Scholar 

  • Della-Marta PM, Luterbacher J, Weissenfluh HV, Xoplaki E, Brunet M, Wanner H (2007) Doubled length of Western European summer heat waves since 1880. J Geophys Res 112. doi:10.1029/2007JD008510

  • Déqué M, Rowell D, Schär C, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate models for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Dickinson R, Henderson-Sellers A, Kennedy P (1993) Biosphere-atmosphere transfer scheme (BATS) version le as coupled to the NCAR community climate model, NCAR technical note

  • Döscher R, Willén U, Jones C, Rutgersson A, Meier H, Hansson U, Graham L (2002) The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192

    Google Scholar 

  • Ducoudré NI, Laval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J Clim 6:248–273

    Article  Google Scholar 

  • Dümenil L, Todini E (1992) A rainfall-runoff scheme for use in the Hamburg climate model. In: O’Kane JP (ed) Advances in theoretical hydrology. A tribute to James Dooge. European geophysical society series on hydrological sciences, vol 1. Elsevier, Amsterdam, pp 129–157

  • Ferro CAT, Hannachi A, Stephenson DB (2005) Simple nonparametric techniques for exploring changing probability distributions of weather. J Clim 18:4344–4354

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007a) Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34. doi:10.1029/2006GL029068

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007b) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099

    Article  Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111. doi:10.1029/2005JD005965

  • Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Giorgi F, Bi X (2005) Regional changes in surface climate interannual variability for the 21st century from ensembles of global model simulations. Geophys Res Lett 32. doi:10.1029/2005GL023002

  • Giorgi F, Huang Y, Nishizawa K, Fu C (1999) A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J Geophys Res 104:6403–6423

    Article  Google Scholar 

  • Hagemann S, Machenhauer B, Jones R, Christensen O, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23:547–567. doi:10.1007/s00382-004-0444-7

    Article  Google Scholar 

  • Hanssen-Bauer I, Førland E, Haugen J, Tveito O (2003) Temperature and precipitation scenarios for Norway: comparison of results from dynamical and empirical downscaling. Clim Res 25:15–27

    Article  Google Scholar 

  • Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950–2006. J Geophys Res (in press)

  • Hirschi M, Seneviratne SI, Hagemann S, Schär C (2007) Analysis of seasonal terrestrial water storage variations in regional climate simulations over Europe. J Geophys Res 112. doi:10.1029/2006JD008338

  • IPCC (2007) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52

    Article  Google Scholar 

  • Jones R, Murphy J, Noguer M (1995) Simulation of climate change over Europe using a nested regional climate model I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449

    Google Scholar 

  • Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Lowe JA, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2003) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim Dyn 20. doi:10.1007/s00382-002-0296-y

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C (2007) Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Change 81:249–265

    Article  Google Scholar 

  • Klein Tank A, Wijngaard J, Können G, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Muller-Westermeier G, Tzanakou M, Szalai S, Palsdottir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Engelen AV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Lopez J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander L, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Klein Tank A, Können G, Selten F (2005) Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. Int J Climatol 25:1–16

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cujipers H (2003) Simulation of present-day climate in RACMO2: first results and model developments. KNMI technical report

  • Lenderink G, van Ulden A, van den Hurk B, van Meijgaard E (2007) Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget. Clim Change 81:233–247

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  Google Scholar 

  • Moberg A, Jones P, Lister D, Walther A, Brunet M, Jacobeit J, Alexander L, Della-Marta P, Luterbacher J, Yiou P, Chen D, Tank A, Saladie O, Sigro J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergstrom H, Bohm R, Butler C, Caesar J, Drebs A, Founda D, Gerstengarbe F, Micela G, Maugeri M, Osterle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner P, Linderholm H, Philipp A, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res 111. doi:10.1029/2006JD007103

  • Nakícenovíc N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung T, Kram T, La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, D. Z (2000) A special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham L, Jones C, Meier H, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Rowell DP (2005) A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Clim Dyn 25:837–849

    Article  Google Scholar 

  • Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  Google Scholar 

  • Scherrer SC, Appenzeller C, Liniger MA, S. C (2005) European temperature distribution changes in observations and climate change scenarios. Geophys Res Lett 32. doi:10.1029/2005GL024108

  • Scherrer SC, Liniger M, Appenzeller C (2008) Climate variability and extremes during the past 100 years. In: Distribution changes of seasonal mean temperature in observations and climate change scenarios. Advances in global change research, vol 33. Springer, Heidelberg, 390 pp

  • Schrodin R, Heise E (2001) The multi-layer version of the DWD soil model TERRALM. Technical report 2, COSMO

  • Seneviratne SI, Pal JS, Eltahir EAB, Schär C (2002) Summer dryness in a warmer climate: a process study with a regional climate model. Clim Dyn 20:69–85. doi:10.1007/s00382-002-0258-4

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  Google Scholar 

  • Steppeler J, Doms G, Schattler U, Bitzer H, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes. Clim Change 79:185–211

    Article  Google Scholar 

  • van den Hurk BJJM, Viterbo P, Beljaars ACM, Betts AK (2000) Offline validation of the ERA40 surface scheme. Tech memo 295, ECMWF, Reading

  • van Ulden A, Lenderink G, van den Hurk B, van Meijgaard E (2007) Circulation statistics and climate change in central Europe: PRUDENCE simulations and observations. Clim Change 81:179–192

    Article  Google Scholar 

  • Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108. doi:10.1029/2002JD002810

  • Vidale PL, Lüthi D, Wegmann R, Schär C (2007) European summer climate variability in a heterogeneous multi-model ensemble. Clim Change 81:209–232

    Article  Google Scholar 

  • Wetherald RT, Manabe S (1999) Detectability of summer dryness caused by greenhouse warming. Clim Change 43:495–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich M. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, E.M., Schär, C. Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33, 917–935 (2009). https://doi.org/10.1007/s00382-008-0473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0473-8

Keywords

Navigation