Skip to main content

Advertisement

Log in

Surgical strategies for management of pediatric arteriovenous malformation rupture: the role of initial decompressive craniectomy

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Arteriovenous malformations (AVMs) are a common cause of intracranial hemorrhage in children, which can result in elevated intracranial pressure (ICP) and cerebral edema. We sought to explore the role of initial decompressive craniectomy at time of rupture, followed by interval surgical AVM resection, compared to treatment with initial resection, in clinical outcomes and recovery in children.

Methods

A retrospective chart review was conducted examining patients age 0–18 with AVM rupture between 2005 and 2018 who underwent resection for ruptured AVM either initially at presentation or underwent initial decompressive craniectomy followed by interval AVM resection. Clinical, radiographic, surgical, and outcome data were examined. Primary outcomes measured included functional status, AVM obliteration rate, AVM recurrence/residual, and re-hemorrhage.

Results

Thirty-six cases were included; 28 (77.8%) underwent initial AVM resection, and 7 (19.4%) underwent initial decompressive craniectomy with interval resection. The mean time between craniectomy and resection was 66.9 days (SD 59.3). Patients undergoing initial decompressive craniectomy with interval resection were younger (mean age 6.1 vs. 9.8 years, p = 0.05) and had a higher mean hematoma volume (52.9 vs. 22.2 mL, p = 0.01), mean midline shift (5.1 vs. 2.1 mm, p = 0.01), and presence of cisternal effacement (p = 0.01). There were no statistically significant associations between surgical strategy and postoperative outcomes, including complications, radiographic outcomes, complete resection, residual, recurrence, and functional outcomes. Those treated by initial craniectomy followed by interval resection were associated with undergoing additional procedures.

Conclusions

Children presenting with AVM rupture who require emergent decompression may safely undergo emergent craniectomy with interval AVM resection and cranioplasty without additional risk of morbidity or mortality. This is reasonable in those with elevated intracranial pressure. This strategy may provide time for initial recovery and allow for natural degradation of the hematoma enhancing the plane for interval AVM resection, perhaps improving outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AVM:

Arteriovenous malformation

ICH:

Intracranial hemorrhage

GCS:

Glasgow Coma Scale

ICP:

Intracranial pressure

References

  1. Ahn JH, Phi JH, Kang H-S, Wang KC, Cho BK, Lee JY, Kim GB, Kim SK (2010) A ruptured middle cerebral artery aneurysm in a 13-month-old boy with Kawasaki disease. J Neurosurg Pediatr. 6(2):150–153. https://doi.org/10.3171/2010.5.PEDS1012

    Article  PubMed  Google Scholar 

  2. Ali A, Basaran B, Yornuk M, Altun D, Aydoseli A, Sencer A, Akinci IO (2013) Factors influencing blood loss and postoperative morbidity in children undergoing craniosynostosis surgery: a retrospective study. Pediatr Neurosurg 49(6):339–346. https://doi.org/10.1159/000368781

    Article  PubMed  Google Scholar 

  3. Anderson RCE, McDowell MM, Kellner CP, Appelboom G, Bruce SS, Kotchetkov IS, Haque R, Feldstein NA, Connolly ES, Solomon RA, Meyers PM, Lavine SD (2012) Arteriovenous malformation-associated aneurysms in the pediatric population. J Neurosurg Pediatr 9(1):11–16. https://doi.org/10.3171/2011.10.PEDS11181

    Article  PubMed  Google Scholar 

  4. Barone DG, Marcus HJ, Guilfoyle MR, Higgins JNP, Antoun N, Santarius T, Trivedi RA, Kirollos RW (2017) Clinical experience and results of microsurgical resection of Arterioveonous malformation in the presence of space-occupying Intracerebral hematoma. Neurosurgery. 81(1):75–86. https://doi.org/10.1093/neuros/nyx003

    Article  PubMed  Google Scholar 

  5. Beecher JS, Lyon K, Ban VS et al (2018) Delayed treatment of ruptured brain AVMs: is it ok to wait? J Neurosurg 128(4):999–1005. https://doi.org/10.3171/2017.1.JNS16745

    Article  PubMed  Google Scholar 

  6. Dorfer C, Czech T, Bavinzski G, Kitz K, Mert A, Knosp E, Gruber A (2010) Multimodality treatment of cerebral AVMs in children: a single-Centre 20 years experience. Childs Nerv Syst 26(5):681–687. https://doi.org/10.1007/s00381-009-1039-8

    Article  PubMed  Google Scholar 

  7. Freeman WD (2015) Management of intracranial pressure. Contin Minneap Minn 21(5 Neurocritical Care):1299–1323. https://doi.org/10.1212/CON.0000000000000235

    Article  Google Scholar 

  8. Hoh BL, Ogilvy CS, Butler WE, Loeffler JS, Putman CM, Chapman PH (2000) Multimodality treatment of Nongalenic Arteriovenous malformations in pediatric patients. Neurosurgery. 47(2):346–358. https://doi.org/10.1097/00006123-200008000-00015

    Article  CAS  PubMed  Google Scholar 

  9. Kurokawa T, Matsuzaki A, Hasuo K, Fukui M, Tomita S, Matsuo M, Chen YJ, Kasemkosolsri C (1985) Cerebral arteriovenous malformations in children. Brain and Development 7(4):408–413. https://doi.org/10.1016/S0387-7604(85)80138-8

    Article  CAS  PubMed  Google Scholar 

  10. Ma L, Chen X-L, Chen Y, Wu C-X, Ma J, Zhao Y-L (2017) Subsequent haemorrhage in children with untreated brain arteriovenous malformation: higher risk with unbalanced inflow and outflow angioarchitecture. Eur Radiol 27(7):2868–2876. https://doi.org/10.1007/s00330-016-4645-3

    Article  PubMed  Google Scholar 

  11. Meyer PG, Orliaguet GA, Zerah M, Charron B, Jarreau MM, Brunelle F, Laurent-Vannier A, Carli PA (2000) Emergency management of deeply comatose children with acute rupture of cerebral arteriovenous malformations. Can J Anaesth J Can Anesth 47(8):758–766. https://doi.org/10.1007/BF03019478

    Article  CAS  Google Scholar 

  12. Pellettieri L, Svendsen P, Wikholm G, Carlsson CA (1997) Hidden compartments in AVMs--a new concept. Acta Radiol Stockh Swed 1987 38(1):2–7

    CAS  Google Scholar 

  13. Ranger A, Szymczak A, Fraser D, Salvadori M, Jardine L (2009) Bilateral decompressive craniectomy for refractory intracranial hypertension in a child with severe ITP-related intracerebral haemorrhage. Pediatr Neurosurg 45(5):390–395. https://doi.org/10.1159/000260910

    Article  PubMed  Google Scholar 

  14. Shtaya A, Millar J, Sparrow O (2017) Multimodality management and outcomes of brain arterio-venous malformations (AVMs) in children: personal experience and review of the literature, with specific emphasis on age at first AVM bleed. Childs Nerv Syst 33(4):573–581. https://doi.org/10.1007/s00381-017-3383-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sorenson TJ, Brinjikji W, Bortolotti C, Kaufmann G, Lanzino G (2018) Recurrent brain Arteriovenous malformations (AVMs): a systematic review. World Neurosurg 116:e856–e866. https://doi.org/10.1016/j.wneu.2018.05.117

    Article  PubMed  Google Scholar 

  16. Stein K-P, Huetter B-O, Goericke S, Oezkan N, Leyrer R, Sandalcioglu IE, Forsting M, Sure U, Mueller O (2018) Cerebral arterio-venous malformations in the paediatric population: angiographic characteristics, multimodal treatment strategies and outcome. Clin Neurol Neurosurg 164:164–168. https://doi.org/10.1016/j.clineuro.2017.12.006

    Article  PubMed  Google Scholar 

  17. Tucker EW, Jain SK, Mahesh M (2017) Balancing the risks of radiation and anesthesia in pediatric patients. J Am Coll Radiol 14(11):1459–1461. https://doi.org/10.1016/j.jacr.2017.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weil AG, Li S, Zhao J-Z (2011) Recurrence of a cerebral arteriovenous malformation following complete surgical resection: a case report and review of the literature. Surg Neurol Int 2. https://doi.org/10.4103/2152-7806.90692

  19. Zhang Q, Peng Y, Wang Y (2017) Long-duration general anesthesia influences the intelligence of school age children. BMC Anesthesiol 17(1):170. https://doi.org/10.1186/s12871-017-0462-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandi Lam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that no conflict of interest exists.

The authors have no conflicts of interest to disclose.

No part of this work has been previously published.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LoPresti, M.A., Goethe, E.A. & Lam, S. Surgical strategies for management of pediatric arteriovenous malformation rupture: the role of initial decompressive craniectomy. Childs Nerv Syst 36, 1445–1452 (2020). https://doi.org/10.1007/s00381-020-04501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04501-0

Keywords

Navigation