Skip to main content

Advertisement

Log in

Development of cystic malacia after high-dose cranial irradiation of pediatric CNS tumors in long-term follow-up

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to investigate the incidence of cystic malacia in long-term survivors of pediatric brain tumors treated with high-dose cranial irradiation.

Materials and methods

Between 1997 and 2015, we treated 41 pediatric patients (26 males, 15 females; age ranging from 3.3 to 15.7 years, median 9-year-old) of pediatric brain tumors [17 medulloblastomas, 7 primitive neuroectodermal tumors (PNET), 3 pineoblastomas, 6 non-germinomatous germ cell tumors (NGGCT), 8 gliomas (including 4 ependymomas, 1 anaplastic astrocytoma, 1 oligodendroglioma, 1 pilocytic astrocytoma, 1 astroblastoma)] with high-dose craniospinal irradiation. Follow-up ranged from 14.0 to 189.2 months (median 86.0 months, mean 81.5 months), the irradiation dose to the whole neural axis ranged from 18 to 41.4 Gy, and the total local dose from 43.2 to 60.4 Gy. All patients underwent follow-up magnetic resonance imaging (MRI) studies at least once a year. Diagnosis of cystic malacia was based solely on MRI findings. Of the 41 patients, 31 were censored during their follow-up due to recurrence of the primary disease (n = 5), detection of secondary leukemia after development of cystic malacia (n = 1), or the absence of cystic malacia on the last follow-up MRI study (n = 25). We also evaluated the development of post-irradiation cavernous angioma and white matter changes.

Results

Following irradiation treatment, 11 patients developed 19 cystic malacia during a median course of 30.8 months (range 14.9 to 59.3 months). The site of predilection for cystic malacia was white matter around trigone of lateral ventricles with an incidence of 47.4% (9 of 19 lesions, 7 in 11 patients). Patients with supratentorial tumors developed cystic malacia statistically earlier than the patients with infratentorial tumors (P = 0.0178, log-rank test). Among the same patient group, incidence of post-irradiation cavernous angioma increased progressively, while the incidence of post-irradiation cystic malacia did not increase after 5 years. White matter degeneration developed earlier than cystic malacia or cavernous angioma, and these three clinical entities developed mutually exclusive of each other.

Conclusion

We attribute the higher incidence of post-irradiation cystic malacia, in our long-term follow-up study, to the cranial irradiation for pediatric brain tumors, particularly supratentorial brain tumors, and recommend a regular, long-term follow-up of brain tumor patients treated with cranial irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rottenberg DA, Horten B, Kim JH, Posner JB (1980) Progressive white matter destruction following irradiation of an extracranial neoplasm. Ann Neurol 8:76–78

    Article  CAS  PubMed  Google Scholar 

  2. Wang AM, Skias DD, Rumbaugh CL, Schoene WC, Zamani A (1983) Central nervous system changes after radiation therapy and/or chemotherapy: correlation of CT and autopsy findings. AJNR Am J Neuroradiol 4:466–471

    CAS  PubMed  Google Scholar 

  3. Tsuruda JS, Kortman KE, Bradley WG, Wheeler DC, Van Dalsem W, Bradley TP (1987) Radiation effects on cerebral white matter: MR evaluation. AJR Am J Roentgenol 149:165–171

    Article  CAS  PubMed  Google Scholar 

  4. Constine LS, Konski A, Ekholm S, McDonald S, Rubin P (1988) Adverse effects of brain irradiation correlated with MR and CT imaging. Int J Radiat Oncol Biol Phys 15:319–330

    Article  CAS  PubMed  Google Scholar 

  5. Walker AJ, Ruzevick J, Malayeri AA, Rigamonti D, Lim M, Redmond KJ, Kleinberg L (2014) Postradiation imaging changes in the CNS: how can we differentiate between treatment effect and disease progression? Future Oncol 10:1277–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamasaki F, Takayasu T, Nosaka R, Kenjo M, Akiyama Y, Tominaga A, Sugiyama K, Kobayashi M, Kurisu K (2015) The postirradiation incidence of cavernous angioma is higher in patients with childhood pineoblastoma or primitive neuroectodermal tumors than medulloblastoma. Childs Nerv Syst 31:901–907

    Article  PubMed  Google Scholar 

  7. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD (2012) Radiation-induced brain injury: a review. Front Oncol 2:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amirjamshidi A, Abbassioun K (2000) Radiation-induced tumors of the central nervous system occurring in childhood and adolescence. Four unusual lesions in three patients and a review of the literature. Childs Nerv Syst 16:390–397

    Article  CAS  PubMed  Google Scholar 

  9. Inskip PD, Sigurdson AJ, Veiga L, Bhatti P, Ronckers C, Rajaraman P, Boukheris H, Stovall M, Smith S, Hammond S, Henderson TO, Watt TC, Mertens AC, Leisenring W, Stratton K, Whitton J, Donaldson SS, Armstrong GT, Robison LL, Neglia JP (2016) Radiation-related new primary solid cancers in the childhood cancer survivor study: comparative radiation dose response and modification of treatment effects. Int J Radiat Oncol Biol Phys 94:800–807

    Article  PubMed  Google Scholar 

  10. Lee AW, Ng SH, Ho JH, Tse VK, Poon YF, Tse CC, Au GK, O SK, Lau WH, Foo WW (1988) Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma. Cancer 61:1535–1542

    Article  CAS  PubMed  Google Scholar 

  11. Tarvonen-Schroder S, Roytta M, Raiha I, Kurki T, Rajala T, Sourander L (1996) Clinical features of leuko-araiosis. J Neurol Neurosurg Psychiatry 60:431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. King AD, Ahuja AT, Yeung DK, Wong JK, Lee YY, Lam WW, Ho SS, Yu SC, Leung SF (2007) Delayed complications of radiotherapy treatment for nasopharyngeal carcinoma: imaging findings. Clin Radiol 62:195–203

    Article  CAS  PubMed  Google Scholar 

  13. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356

    Article  CAS  PubMed  Google Scholar 

  14. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80:422–432

    Article  CAS  PubMed  Google Scholar 

  15. Greene-Schloesser D, Robbins ME (2012) Radiation-induced cognitive impairment—from bench to bedside. Neuro Oncol 14(Suppl 4):iv37–iv44

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rezaie P, Dean A (2002) Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 22:106–132

    Article  PubMed  Google Scholar 

  17. Miller SP, McQuillen PS, Hamrick S, Xu D, Glidden DV, Charlton N, Karl T, Azakie A, Ferriero DM, Barkovich AJ, Vigneron DB (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1928–1938

    Article  CAS  PubMed  Google Scholar 

  18. Kohelet D, Shochat R, Lusky A, Reichman B (2006) Risk factors for seizures in very low birthweight infants with periventricular leukomalacia. J Child Neurol 21:965–970

    Article  PubMed  Google Scholar 

  19. Glass HC, Fujimoto S, Ceppi-Cozzio C, Bartha AI, Vigneron DB, Barkovich AJ, Glidden DV, Ferriero DM, Miller SP (2008) White-matter injury is associated with impaired gaze in premature infants. Pediatr Neurol 38:10–15

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fetters L, Huang HH (2007) Motor development and sleep, play, and feeding positions in very-low-birthweight infants with and without white matter disease. Dev Med Child Neurol 49:807–813

    Article  PubMed  Google Scholar 

  21. Gurses C, Gross DW, Andermann F, Bastos A, Dubeau F, Calay M, Eraksoy M, Bezci S, Andermann E, Melanson D (1999) Periventricular leukomalacia and epilepsy: incidence and seizure pattern. Neurology 52:341–345

    Article  CAS  PubMed  Google Scholar 

  22. Laprie A, Hu Y, Alapetite C, Carrie C, Habrand JL, Bolle S, Bondiau PY, Ducassou A, Huchet A, Bertozzi AI, Perel Y, Moyal E, Balosso J (2015) Paediatric brain tumours: a review of radiotherapy, state of the art and challenges for the future regarding protontherapy and carbontherapy. Cancer Radiother 19:775–789

    Article  CAS  PubMed  Google Scholar 

  23. Lew SM, Morgan JN, Psaty E, Lefton DR, Allen JC, Abbott R (2006) Cumulative incidence of radiation-induced cavernomas in long-term survivors of medulloblastoma. J Neurosurg 104:103–107

    PubMed  Google Scholar 

  24. Burn S, Gunny R, Phipps K, Gaze M, Hayward R (2007) Incidence of cavernoma development in children after radiotherapy for brain tumors. J Neurosurg 106:379–383

    PubMed  Google Scholar 

  25. Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M, Coche B (2011) Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst 27:445–453

    Article  PubMed  Google Scholar 

  26. von Hoff K, Hinkes B, Gerber NU, Deinlein F, Mittler U, Urban C, Benesch M, Warmuth-Metz M, Soerensen N, Zwiener I, Goette H, Schlegel PG, Pietsch T, Kortmann RD, Kuehl J, Rutkowski S (2009) Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT’91. Eur J Cancer 45:1209–1217

    Article  Google Scholar 

  27. Curran WJ, Hecht-Leavitt C, Schut L, Zimmerman RA, Nelson DF (1987) Magnetic resonance imaging of cranial radiation lesions. Int J Radiat Oncol Biol Phys 13:1093–1098

    Article  CAS  PubMed  Google Scholar 

  28. Nishimura R, Takahashi M, Morishita S, Sumi M, Uozumi H, Sakamoto Y (1992) MR imaging of late radiation brain injury. Radiat Med 10:101–108

    CAS  PubMed  Google Scholar 

  29. Kim KW, MacFall JR, Payne ME (2008) Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry 64:273–280

    Article  PubMed  PubMed Central  Google Scholar 

  30. Krull KR, Brinkman TM, Li C, Armstrong GT, Ness KK, Srivastava DK, Gurney JG, Kimberg C, Krasin MJ, Pui CH, Robison LL, Hudson MM (2013) Neurocognitive outcomes decades after treatment for childhood acute lymphoblastic leukemia: a report from the St Jude lifetime cohort study. J Clin Oncol 31:4407–4415

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brown WR, Blair RM, Moody DM, Thore CR, Ahmed S, Robbins ME, Wheeler KT (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurol Sci 257:67–71

    Article  PubMed  Google Scholar 

  32. Nagesh V, Tsien CI, Chenevert TL, Ross BD, Lawrence TS, Junick L, Cao Y (2008) Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 70:1002–1010

    Article  PubMed  PubMed Central  Google Scholar 

  33. Connor M, Karunamuni R, McDonald C, White N, Pettersson N, Moiseenko V, Seibert T, Marshall D, Cervino L, Bartsch H, Kuperman J, Murzin V, Krishnan A, Farid N, Dale A, Hattangadi-Gluth J (2016) Dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 121:209–216

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was partially supported by Japan Society for the promotion of Science Grant-in-Aid for Scientific Research (C) (Grant-in-aid nos. 16K10757) and financial support for research project related to childhood cancer by Children’s Cancer Association of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiyuki Yamasaki.

Ethics declarations

This retrospective study was approved by our institutional review board (No. E-454) and waived the need of written patient consent.

Conflict of interest

All authors, none.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamasaki, F., Takayasu, T., Nosaka, R. et al. Development of cystic malacia after high-dose cranial irradiation of pediatric CNS tumors in long-term follow-up. Childs Nerv Syst 33, 957–964 (2017). https://doi.org/10.1007/s00381-017-3400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-017-3400-7

Keywords

Navigation