Skip to main content

Advertisement

Log in

The role of vertebrate models in understanding craniosynostosis

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable.

Discussion

The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morriss-Kay GM, Wilkie AO (2005) Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 207:637–653

    Article  PubMed  Google Scholar 

  2. Mooney MP, Siegel MI, Opperman LA (2002) Animal models of craniosynostosis: experimental, congenital, and transgenic models. In: Mooney MP, Siegel MI (eds) Understanding craniofacial anomalies: the etiopathogenesis of craniosynostoses and facial clefting. Wiley-Liss, Inc., New York, pp 209–249

  3. Boulet SL, Rasmussen SA, Honein MA (2008) A population-based study of craniosynostosis in metropolitan Atlanta, 1989–2003. Am J Med Genet A 146A:984–991

    Article  PubMed  Google Scholar 

  4. Cohen MM Jr (2000) Epidemiology of craniosynostosis. In: Cohen MM Jr, MacLean RE (eds) Craniosynostosis: diagnosis, evaluation, and management, 2nd edn. Oxford University Press, New York, pp 112–118

    Google Scholar 

  5. Lajeunie E, Le Merrer M, Bonaiti-Pellie C, Marchac D, Renier D (1995) Genetic study of nonsyndromic coronal craniosynostosis. Am J Med Genet 55:500–504

    Article  PubMed  CAS  Google Scholar 

  6. Wilkie AO, Byren JC, Hurst JA, Jayamohan J, Johnson D, Knight SJ, Lester T, Richards PG, Twigg SR, Wall SA (2010) Prevalence and complications of single-gene and chromosomal disorders in craniosynostosis. Pediatrics 126:391–400

    Article  Google Scholar 

  7. Johnson D, Wilkie AO (2011) Craniosynostosis. Eur J Hum Genet 19:369–376

    Article  PubMed  CAS  Google Scholar 

  8. Gomes PS, Fernandes MH (2011) Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 45:14–24

    Article  PubMed  CAS  Google Scholar 

  9. Gondo Y (2010) Now and future of mouse mutagenesis for human disease models. J Genet Genomics 37:559–572

    Article  PubMed  CAS  Google Scholar 

  10. Justice MJ, Siracusa LD, Stewart AF (2011) Technical approaches for mouse models of human disease. Dis Model Mech 4:305–310

    Article  PubMed  CAS  Google Scholar 

  11. Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29:E8

    Article  PubMed  Google Scholar 

  12. Warren SM, Greenwald JA, Spector JA, Bouletreau P, Mehrara BJ, Longaker MT (2001) New developments in cranial suture research. Plast Reconstr Surg 107:523–540

    Article  PubMed  CAS  Google Scholar 

  13. Lewanda AF, Jabs EW (2007) Craniosynostosis. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR (eds) Emery & Rimoin's principles and practice of medical genetics, 5th edn. Churchill Livingstone, Philadelphia, pp 3359–3379

  14. Zhou YX, Xu X, Chen L, Li C, Brodie SG, Deng CX (2000) A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet 9:2001–2008

    Article  PubMed  CAS  Google Scholar 

  15. Chen L, Li D, Li C, Engel A, Deng CX (2003) A Ser252Trp [corrected] substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis. Bone 33:169–178

    Article  PubMed  CAS  Google Scholar 

  16. Holmes G, Rothschild G, Roy UB, Deng CX, Mansukhani A, Basilico C (2009) Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev Biol 328:273–284

    Article  PubMed  CAS  Google Scholar 

  17. Wang Y, Xiao R, Yang F, Karim BO, Iacovelli AJ, Cai J, Lerner CP, Richtsmeier JT, Leszl JM, Hill CA, Yu K, Ornitz DM, Elisseeff J, Huso DL, Jabs EW (2005) Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse. Development 132:3537–3548

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Sun M, Uhlhorn VL, Zhou X, Peter I, Martinez-Abadias N, Hill CA, Percival CJ, Richtsmeier JT, Huso DL, Jabs EW (2010) Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice. BMC Dev Biol 10:22

    Article  PubMed  CAS  Google Scholar 

  19. Yin L, Du X, Li C, Xu X, Chen Z, Su N, Zhao L, Qi H, Li F, Xue J (2008) A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone 42:631–643

    Article  PubMed  CAS  Google Scholar 

  20. Hajihosseini MK, Wilson S, De Moerlooze L, Dickson C (2001) A splicing switch and gain-of-function mutation in FgfR2-IIIc hemizygotes causes Apert/Pfeiffer-syndrome-like phenotypes. Proc Natl Acad Sci U S A 98:3855–3860

    Article  PubMed  CAS  Google Scholar 

  21. Holmes G, Basilico C (2012) Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol (in press) doi:10.1016/j.ydbio.2012.05.026

  22. Renier D, Lajeunie E, Arnaud E, Marchac D (2000) Management of craniosynostoses. Childs Nerv Syst 16:645–658

    Article  PubMed  CAS  Google Scholar 

  23. Kreiborg S, Cohen MM Jr (1998) Is craniofacial morphology in Apert and Crouzon syndromes the same? Acta Odontol Scand 56:339–341

    Article  PubMed  CAS  Google Scholar 

  24. Eswarakumar VP, Horowitz MC, Locklin R, Morriss-Kay GM, Lonai P (2004) A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc Natl Acad Sci U S A 101:12555–12560

    Article  PubMed  CAS  Google Scholar 

  25. Mai S, Wei K, Flenniken A, Adamson SL, Rossant J, Aubin JE, Gong SG (2010) The missense mutation W290R in Fgfr2 causes developmental defects from aberrant IIIb and IIIc signaling. Dev Dyn 239:1888–1900

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Zhou X, Oberoi K, Phelps R, Couwenhoven R, Sun M, Rezza A, Holmes G, Percival CJ, Friedenthal J, Krejci P, Richtsmeier JT, Huso DL, Rendl M, Jabs EW (2012) p38 inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare–Stevenson mice. J Clin Invest 122:2153–2164

    Article  PubMed  CAS  Google Scholar 

  27. Twigg SR, Healy C, Babbs C, Sharpe JA, Wood WG, Sharpe PT, Morriss-Kay GM, Wilkie AO (2009) Skeletal analysis of the Fgfr3(P244R) mouse, a genetic model for the Muenke craniosynostosis syndrome. Dev Dyn 238:331–342

    Article  PubMed  CAS  Google Scholar 

  28. Purushothaman R, Cox TC, Muga AM, Cunningham ML (2011) Facial suture synostosis of newborn Fgfr1(P250R/+) and Fgfr2(S252W/+) mouse models of Pfeiffer and Apert syndromes. Birth Defects Res A Clin Mol Teratol 91:603–609

    Article  PubMed  CAS  Google Scholar 

  29. Aldridge K, Hill CA, Austin JR, Percival C, Martinez-Abadias N, Neuberger T, Wang Y, Jabs EW, Richtsmeier JT (2010) Brain phenotypes in two FGFR2 mouse models for Apert syndrome. Dev Dyn 239:987–997

    Article  PubMed  CAS  Google Scholar 

  30. Martinez-Abadias N, Heuze Y, Wang Y, Jabs EW, Aldridge K, Richtsmeier JT (2011) FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. PLoS One 6:e26425

    Article  PubMed  CAS  Google Scholar 

  31. Martinez-Abadias N, Percival C, Aldridge K, Hill CA, Ryan T, Sirivunnabood S, Wang Y, Jabs EW, Richtsmeier JT (2010) Beyond the closed suture in Apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth. Dev Dyn 239:3058–3071

    Article  PubMed  Google Scholar 

  32. Perlyn CA, DeLeon VB, Babbs C, Govier D, Burell L, Darvann T, Kreiborg S, Morriss-Kay G (2006) The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three-dimensional MicroCT. Cleft Palate Craniofac J 43:740–748

    Article  PubMed  Google Scholar 

  33. Olafsdottir H, Darvann TA, Hermann NV, Oubel E, Ersboll BK, Frangi AF, Larsen P, Perlyn CA, Morriss-Kay GM, Kreiborg S (2007) Computational mouse atlases and their application to automatic assessment of craniofacial dysmorphology caused by the Crouzon mutation Fgfr2(C342Y). J Anat 211:37–52

    Article  PubMed  Google Scholar 

  34. Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM (2002) Tissue origins and interactions in the mammalian skull vault. Dev Biol 241:106–116

    Article  PubMed  CAS  Google Scholar 

  35. Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S (2008) Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 125:797–808

    Article  PubMed  CAS  Google Scholar 

  36. Carver EA, Oram KF, Gridley T (2002) Craniosynostosis in Twist heterozygous mice: a model for Saethre–Chotzen syndrome. Anat Rec 268:90–92

    Article  PubMed  Google Scholar 

  37. Merrill AE, Bochukova EG, Brugger SM, Ishii M, Pilz DT, Wall SA, Lyons KM, Wilkie AO, Maxson RE (2006) Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet 15:1319–1328

    Article  PubMed  CAS  Google Scholar 

  38. Ting MC, Wu NL, Roybal PG, Sun J, Liu L, Yen Y, Maxson RE Jr (2009) EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development 136:855–864

    Article  PubMed  CAS  Google Scholar 

  39. Yen HY, Ting MC, Maxson RE (2010) Jagged1 functions downstream of Twist1 in the specification of the coronal suture and the formation of a boundary between osteogenic and non-osteogenic cells. Dev Biol 347:258–270

    Article  PubMed  CAS  Google Scholar 

  40. Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, Maxson RE, Thesleff I (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845–1855

    PubMed  CAS  Google Scholar 

  41. Connerney J, Andreeva V, Leshem Y, Mercado MA, Dowell K, Yang X, Lindner V, Friesel RE, Spicer DB (2008) Twist1 homodimers enhance FGF responsiveness of the cranial sutures and promote suture closure. Dev Biol 318:323–334

    Article  PubMed  CAS  Google Scholar 

  42. Connerney J, Andreeva V, Leshem Y, Muentener C, Mercado MA, Spicer DB (2006) Twist1 dimer selection regulates cranial suture patterning and fusion. Dev Dyn 235:1345–1357

    Article  PubMed  CAS  Google Scholar 

  43. Eswarakumar VP, Ozcan F, Lew ED, Bae JH, Tomé F, Booth CJ, Adams DJ, Lax I, Schlessinger J (2006) Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci U S A 103:18603–18608

    Article  PubMed  CAS  Google Scholar 

  44. Bush JO, Soriano P (2009) Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Dev 23:1586–1599

    Article  PubMed  CAS  Google Scholar 

  45. Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y (2003) Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 130:5269–5280

    Article  PubMed  CAS  Google Scholar 

  46. Dudas M, Kim J, Li WY, Nagy A, Larsson J, Karlsson S, Chai Y, Kaartinen V (2006) Epithelial and ectomesenchymal role of the type I TGF-beta receptor ALK5 during facial morphogenesis and palatal fusion. Dev Biol 296:298–314

    Article  PubMed  CAS  Google Scholar 

  47. Schmidt K, Hughes C, Chudek JA, Goodyear SR, Aspden RM, Talbot R, Gundersen TE, Blomhoff R, Henderson C, Wolf CR, Tickle C (2009) Cholesterol metabolism: the main pathway acting downstream of cytochrome P450 oxidoreductase in skeletal development of the limb. Mol Cell Biol 29:2716–2729

    Article  PubMed  CAS  Google Scholar 

  48. Gunther T, Struwe M, Aguzzi A, Schughart K (1994) Open brain, a new mouse mutant with severe neural tube defects, shows altered gene expression patterns in the developing spinal cord. Development 120:3119–3130

    PubMed  CAS  Google Scholar 

  49. Kasarskis A, Manova K, Anderson KV (1998) A phenotype-based screen for embryonic lethal mutations in the mouse. Proc Natl Acad Sci U S A 95:7485–7490

    Article  PubMed  CAS  Google Scholar 

  50. Laurita J, Koyama E, Chin B, Taylor JA, Lakin GE, Hankenson KD, Bartlett SP, Nah HD (2011) The Muenke syndrome mutation (FgfR3P244R) causes cranial base shortening associated with growth plate dysfunction and premature perichondrial ossification in murine basicranial synchondroses. Dev Dyn 240:2584–2596

    Article  PubMed  CAS  Google Scholar 

  51. Behr B, Longaker MT, Quarto N (2010) Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol 344:922–940

    Article  PubMed  CAS  Google Scholar 

  52. Behr B, Longaker MT, Quarto N (2011) Craniosynostosis of coronal suture in Twist1 mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture. Front Physiol 2:37

    Article  PubMed  Google Scholar 

  53. Sanchez-Lara PA, Carmichael SL, Graham JM Jr, Lammer EJ, Shaw GM, Ma C, Rasmussen SA (2010) Fetal constraint as a potential risk factor for craniosynostosis. Am J Med Genet A 152A:394–400

    Article  PubMed  Google Scholar 

  54. Chen JH, Liu C, You L, Simmons CA (2010) Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone. J Biomech 43:108–118

    Article  PubMed  Google Scholar 

  55. Oppenheimer AJ, Rhee ST, Goldstein SA, Buchman SR (2012) Force-induced craniosynostosis via paracrine signaling in the murine sagittal suture. J Craniofac Surg 23:573–577

    Article  PubMed  Google Scholar 

  56. Oppenheimer AJ, Rhee ST, Goldstein SA, Buchman SR (2009) Force-induced craniosynostosis in the murine sagittal suture. Plast Reconstr Surg 124:1840–1848

    Article  PubMed  CAS  Google Scholar 

  57. Koskinen-Moffett L (1986) An in vivo experimental model for prenatal craniosynostosis. J Dent Res 65:278

    Google Scholar 

  58. Jacob S, Wu C, Freeman T, Koyama E, Kirschner R (2007) Expression of Indian hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann Plast Surg 58:215–221

    Article  PubMed  CAS  Google Scholar 

  59. Kirschner RE, Gannon FH, Xu J, Wang J, Karmacharya J, Bartlett SP, Whitaker LA (2002) Craniosynostosis and altered patterns of fetal TGF-beta expression induced by intrauterine constraint. Plast Reconstr Surg 109:2338–2346

    Article  PubMed  Google Scholar 

  60. Smartt JM Jr, Karmacharya J, Gannon FH, Teixeira C, Mansfield K, Hunenko O, Shapiro IM, Kirschner RE (2005) Intrauterine fetal constraint induces chondrocyte apoptosis and premature ossification of the cranial base. Plast Reconstr Surg 116:1363–1369

    Article  PubMed  CAS  Google Scholar 

  61. Mehrara BJ, Spector JA, Greenwald JA, Ueno H, Longaker MT (2002) Adenovirus-mediated transmission of a dominant negative transforming growth factor-beta receptor inhibits in vitro mouse cranial suture fusion. Plast Reconstr Surg 110:506–514

    Article  PubMed  Google Scholar 

  62. Yu P, Gosain AK, Khanna A (2001) The role of transforming growth factor-beta in the modulation of mouse cranial suture fusion. Plast Reconstr Surg 108:916–924

    Article  PubMed  CAS  Google Scholar 

  63. Cooper GM, Usas A, Olshanski A, Mooney MP, Losee JE, Huard J (2009) Ex vivo Noggin gene therapy inhibits bone formation in a mouse model of postoperative resynostosis. Plast Reconstr Surg 123:94S–103S

    Article  PubMed  CAS  Google Scholar 

  64. Perlyn C, Morriss-Kay G, Darvann T, Tenenbaum M, Ornitz DM (2006) A model for the pharmacological treatment of Crouzon syndrome. Neurosurgery 59:210–215

    Article  PubMed  Google Scholar 

  65. Shukla V, Coumoul X, Wang R, Kim H, Deng CX (2007) RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 39:1145–1150

    Article  PubMed  CAS  Google Scholar 

  66. Levine JP, Bradley JP, Roth DA, McCarthy JG, Longaker MT (1998) Studies in cranial suture biology: regional dura mater determines overlying suture biology. Plast Reconstr Surg 101:1441–1447

    Article  PubMed  CAS  Google Scholar 

  67. Opperman LA, Sweeney TM, Redmon J, Persing JA, Ogle RC (1993) Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures. Dev Dyn 198:312–322

    Article  PubMed  CAS  Google Scholar 

  68. Roth DA, Bradley JP, Levine JP, McMullen HF, McCarthy JG, Longaker MT (1996) Studies in cranial suture biology: part II. Role of the dura in cranial suture fusion. Plast Reconstr Surg 97:693–699

    Article  PubMed  CAS  Google Scholar 

  69. Slater BJ, Kwan MD, Gupta DM, Lee JK, Longaker MT (2009) The role of regional posterior frontal dura mater in the overlying suture morphology. Plast Reconstr Surg 123:463–469

    Article  PubMed  CAS  Google Scholar 

  70. Opperman LA, Nolen AA, Ogle RC (1997) TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro. J Bone Miner Res 12:301–310

    Article  PubMed  CAS  Google Scholar 

  71. Opperman LA, Adab K, Gakunga PT (2000) Transforming growth factor-beta 2 and TGF-beta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis. Dev Dyn 219:237–247

    Article  PubMed  CAS  Google Scholar 

  72. Opperman LA, Chhabra A, Cho RW, Ogle RC (1999) Cranial suture obliteration is induced by removal of transforming growth factor (TGF)-beta 3 activity and prevented by removal of TGF-beta 2 activity from fetal rat calvaria in vitro. J Craniofac Genet Dev Biol 19:164–173

    PubMed  CAS  Google Scholar 

  73. Greenwald JA, Mehrara BJ, Spector JA, Warren SM, Fagenholz PJ, Smith LE, Bouletreau PJ, Crisera FE, Ueno H, Longaker MT (2001) In vivo modulation of FGF biological activity alters cranial suture fate. Am J Pathol 158:441–452

    Article  PubMed  CAS  Google Scholar 

  74. Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K, Soo C (2006) Nell-1-induced bone regeneration in calvarial defects. Am J Pathol 169:903–915

    Article  PubMed  CAS  Google Scholar 

  75. Li W, Zara JN, Siu RK, Lee M, Aghaloo T, Zhang X, Wu BM, Gertzman AA, Ting K, Soo C (2011) Nell-1 enhances bone regeneration in a rat critical-sized femoral segmental defect model. Plast Reconstr Surg 127:580–587

    Article  PubMed  CAS  Google Scholar 

  76. Opperman LA, Moursi AM, Sayne JR, Wintergerst AM (2002) Transforming growth factor-beta 3(Tgf-beta3) in a collagen gel delays fusion of the rat posterior interfrontal suture in vivo. Anat Rec 267:120–130

    Article  PubMed  CAS  Google Scholar 

  77. Shen K, Krakora SM, Cunningham M, Singh M, Wang X, Hu FZ, Post JC, Ehrlich GD (2009) Medical treatment of craniosynostosis: recombinant Noggin inhibits coronal suture closure in the rat craniosynostosis model. Orthod Craniofac Res 12:254–262

    Article  PubMed  CAS  Google Scholar 

  78. Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT (2003) The BMP antagonist Noggin regulates cranial suture fusion. Nature 422:625–629

    Article  PubMed  CAS  Google Scholar 

  79. Heller J, Gabbay J, Wasson K, Mitchell S, Heller M, Zuk P, Bradley J (2007) Cranial suture response to stress: expression patterns of Noggin and Runx2. Plast Reconstr Surg 119:2037–2045

    Article  PubMed  CAS  Google Scholar 

  80. Mooney MP, Losken HW, Siegel MI, Lalikos JF, Losken A, Smith TD, Burrows AM (1994) Development of a strain of rabbits with congenital simple nonsyndromic coronal suture synostosis. Part I: breeding demographics, inheritance pattern, and craniofacial anomalies. Cleft Palate Craniofac J 31:1–7

    Article  PubMed  CAS  Google Scholar 

  81. Mooney MP, Siegel MI, Burrows AM, Smith TD, Losken HW, Dechant J, Cooper G, Fellows-Mayle W, Kapucu MR, Kapucu LO (1998) A rabbit model of human familial, nonsyndromic unicoronal suture synostosis. II. Intracranial contents, intracranial volume, and intracranial pressure. Childs Nerv Syst 14:247–255

    Article  PubMed  CAS  Google Scholar 

  82. Mooney MP, Siegel MI, Burrows AM, Smith TD, Losken HW, Dechant J, Cooper G, Kapucu MR (1998) A rabbit model of human familial, nonsyndromic unicoronal suture synostosis. I. Synostotic onset, pathology, and sutural growth patterns. Childs Nerv Syst 14:236–246

    Article  PubMed  CAS  Google Scholar 

  83. Chong SL, Mitchell R, Moursi AM, Winnard P, Losken HW, Bradley J, Ozerdem OR, Azari K, Acarturk O, Opperman LA, Siegel MI, Mooney MP (2003) Rescue of coronal suture fusion using transforming growth factor-beta 3 (Tgf-beta 3) in rabbits with delayed-onset craniosynostosis. Anat Rec A Discov Mol Cell Evol Biol 274:962–971

    Article  PubMed  CAS  Google Scholar 

  84. Frazier BC, Mooney MP, Losken HW, Barbano T, Moursi A, Siegel MI, Richtsmeier JT (2008) Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 45:571–582

    Article  PubMed  Google Scholar 

  85. Mooney MP, Losken HW, Moursi AM, Bradley J, Azari K, Acarturk TO, Cooper GM, Thompson B, Opperman LA, Siegel MI (2007) Anti-TGF-beta2 antibody therapy inhibits postoperative resynostosis in craniosynostotic rabbits. Plast Reconstr Surg 119:1200–1212

    Article  PubMed  CAS  Google Scholar 

  86. Mooney MP, Losken HW, Moursi AM, Shand JM, Cooper GM, Curry C, Ho L, Burrows AM, Stelnicki EJ, Losee JE, Opperman LA, Siegel MI (2007) Postoperative anti-Tgf-beta2 antibody therapy improves intracranial volume and craniofacial growth in craniosynostotic rabbits. J Craniofac Surg 18:336–346

    Article  PubMed  Google Scholar 

  87. Cooper GM, Curry C, Barbano TE, Burrows AM, Vecchione L, Caccamese JF, Norbutt CS, Costello BJ, Losee JE, Moursi AM, Huard J, Mooney MP (2007) Noggin inhibits postoperative resynostosis in craniosynostotic rabbits. J Bone Miner Res 22:1046–1054

    Article  PubMed  Google Scholar 

  88. Cray J Jr, Burrows AM, Vecchione L, Caccamese JF Jr, Losee JE, Moursi AM, Siegel MI, Cooper GM, Mooney MP (2011) Blocking bone morphogenetic protein function using in vivo Noggin therapy does not rescue premature suture fusion in rabbits with delayed-onset craniosynostosis. Plast Reconstr Surg 127:1163–1172

    Article  PubMed  CAS  Google Scholar 

  89. Duranthon V, Beaujean N, Brunner M, Odening KE, Santos AN, Kacskovics I, Hiripi L, Weinstein EJ, Bosze Z (2012) On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Res (in press) doi:10.1007/s11248-012-9599-x

  90. Sauka-Spengler T, Barembaum M (2008) Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol 87:237–256

    Article  PubMed  CAS  Google Scholar 

  91. Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17

    PubMed  CAS  Google Scholar 

  92. Jheon AH, Schneider RA (2009) The cells that fill the bill: neural crest and the evolution of craniofacial development. J Dent Res 88:12–21

    Article  PubMed  CAS  Google Scholar 

  93. Holleville N, Quilhac A, Bontoux M, Monsoro-Burq AH (2003) BMP signals regulate Dlx5 during early avian skull development. Dev Biol 257:177–189

    Article  PubMed  CAS  Google Scholar 

  94. Evans DJ, Noden DM (2006) Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 235:1310–1325

    Article  PubMed  Google Scholar 

  95. Lawson ND, Wolfe SA (2011) Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 21:48–64

    Article  PubMed  CAS  Google Scholar 

  96. Quarto N, Longaker MT (2005) The zebrafish (Danio rerio): a model system for cranial suture patterning. Cells Tissues Organs 181:109–118

    Article  PubMed  Google Scholar 

  97. Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Abdelilah S, Stainier DY, Driever W (1996) Mutations affecting craniofacial development in zebrafish. Development 123:357–367

    PubMed  CAS  Google Scholar 

  98. Yelick PC, Schilling TF (2002) Molecular dissection of craniofacial development using zebrafish. Crit Rev Oral Biol Med 13:308–322

    Article  PubMed  Google Scholar 

  99. Andreeva V, Connolly MH, Stewart-Swift C, Fraher D, Burt J, Cardarelli J, Yelick PC (2011) Identification of adult mineralized tissue zebrafish mutants. Genesis 49:360–366

    Article  PubMed  CAS  Google Scholar 

  100. Laue K, Pogoda HM, Daniel PB, van Haeringen A, Alanay Y, von Ameln S, Rachwalski M, Morgan T, Gray MJ, Breuning MH, Sawyer GM, Sutherland-Smith AJ, Nikkels PG, Kubisch C, Bloch W, Wollnik B, Hammerschmidt M, Robertson SP (2011) Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89:595–606

    Article  PubMed  CAS  Google Scholar 

  101. Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, Kenny J, Waters A, Jenkins D, Kaissi AA, Leal GF, Dallapiccola B, Carnevale F, Bitner-Glindzicz M, Lees M, Hennekam R, Stanier P, Burns AJ, Peeters H, Alkuraya FS, Beales PL (2011) Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet 43:197–203

    Article  PubMed  CAS  Google Scholar 

  102. Parsons KJ, Andreeva V, James Cooper W, Yelick PC, Craig Albertson R (2011) Morphogenesis of the zebrafish jaw: development beyond the embryo. Methods Cell Biol 101:225–248

    Article  PubMed  Google Scholar 

  103. Slater BJ, Liu KJ, Kwan MD, Quarto N, Longaker MT (2009) Cranial osteogenesis and suture morphology in Xenopus laevis: a unique model system for studying craniofacial development. PLoS One 4:e3914

    Article  PubMed  CAS  Google Scholar 

  104. Gross JB, Hanken J (2005) Cranial neural crest contributes to the bony skull vault in adult Xenopus laevis: insights from cell labeling studies. J Exp Zool B Mol Dev Evol 304:169–176

    Article  PubMed  Google Scholar 

  105. Ogino H, Ochi H (2009) Resources and transgenesis techniques for functional genomics in Xenopus. Develop Growth Differ 51:387–401

    Article  CAS  Google Scholar 

  106. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–435

    Article  PubMed  CAS  Google Scholar 

  107. Liu YH, Kundu R, Wu L, Luo W, Ignelzi MA, Snead ML, Maxson RE (1995) Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull. Proc Natl Acad Sci U S A 92:6137–6141

    Article  PubMed  CAS  Google Scholar 

  108. Vissers LE, Cox TC, Maga AM, Short KM, Wiradjaja F, Janssen IM, Jehee F, Bertola D, Liu J, Yagnik G, Sekiguchi K, Kiyozumi D, van Bokhoven H, Marcelis C, Cunningham ML, Anderson PJ, Boyadjiev SA, Passos-Bueno MR, Veltman JA, Smyth I, Buckley MF, Roscioli T (2011) Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice. PLoS Genet 7:e1002278

    Article  PubMed  CAS  Google Scholar 

  109. Hui CC, Joyner AL (1993) A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3:241–246

    Article  PubMed  CAS  Google Scholar 

  110. Rice DP, Connor EC, Veltmaat JM, Lana-Elola E, Veistinen L, Tanimoto Y, Bellusci S, Rice R (2010) Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Hum Mol Genet 19:3457–3467

    Article  PubMed  CAS  Google Scholar 

  111. Carlton MB, Colledge WH, Evans MJ (1998) Crouzon-like craniofacial dysmorphology in the mouse is caused by an insertional mutation at the Fgf3/Fgf4 locus. Dev Dyn 212:242–249

    Article  PubMed  CAS  Google Scholar 

  112. Jehee FS, Bertola DR, Yelavarthi KK, Krepischi-Santos AC, Kim C, Vianna-Morgante AM, Vermeesch JR, Passos-Bueno MR (2007) An 11q11-q13.3 duplication, including FGF3 and FGF4 genes, in a patient with syndromic multiple craniosynostoses. Am J Med Genet A 143A:1912–1918

    Article  PubMed  Google Scholar 

  113. Harada M, Murakami H, Okawa A, Okimoto N, Hiraoka S, Nakahara T, Akasaka R, Shiraishi Y, Futatsugi N, Mizutani-Koseki Y, Kuroiwa A, Shirouzu M, Yokoyama S, Taiji M, Iseki S, Ornitz DM, Koseki H (2009) FGF9 monomer-dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nat Genet 41:289–298

    Article  PubMed  CAS  Google Scholar 

  114. Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P (2002) The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 129:3783–3793

    PubMed  CAS  Google Scholar 

  115. De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492

    PubMed  Google Scholar 

  116. Zhang X, Kuroda S, Carpenter D, Nishimura I, Soo C, Moats R, Iida K, Wisner E, Hu FY, Miao S, Beanes S, Dang C, Vastardis H, Longaker M, Tanizawa K, Kanayama N, Saito N, Ting K (2002) Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest 110:861–870

    PubMed  CAS  Google Scholar 

  117. Yu HM, Jerchow B, Sheu TJ, Liu B, Costantini F, Puzas JE, Birchmeier W, Hsu W (2005) The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132:1995–2005

    Article  PubMed  CAS  Google Scholar 

  118. Li C, Scott DA, Hatch E, Tian X, Mansour SL (2007) Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134:167–176

    Article  PubMed  CAS  Google Scholar 

  119. Settle SH Jr, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254:116–130

    Article  PubMed  CAS  Google Scholar 

  120. Moenning A, Jager R, Egert A, Kress W, Wardelmann E, Schorle H (2009) Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 29:881–891

    Article  PubMed  CAS  Google Scholar 

  121. Maeno T, Moriishi T, Yoshida CA, Komori H, Kanatani N, Izumi S, Takaoka K, Komori T (2011) Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects. Bone 49:673–682

    Article  PubMed  CAS  Google Scholar 

  122. Compagni A, Logan M, Klein R, Adams RH (2003) Control of skeletal patterning by ephrinB1–EphB interactions. Dev Cell 5:217–230

    Article  PubMed  CAS  Google Scholar 

  123. Davy A, Aubin J, Soriano P (2004) Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 18:572–583

    Article  PubMed  CAS  Google Scholar 

  124. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund–Thomson syndrome. Hum Mol Genet 14:813–825

    Article  PubMed  CAS  Google Scholar 

  125. Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412:194–198

    Article  PubMed  CAS  Google Scholar 

  126. Henderson CJ, Otto DM, Carrie D, Magnuson MA, McLaren AW, Rosewell I, Wolf CR (2003) Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem 278:13480–13486

    Article  PubMed  CAS  Google Scholar 

  127. Nieminen P, Morgan NV, Fenwick AL, Parmanen S, Veistinen L, Mikkola ML, van der Spek PJ, Giraud A, Judd L, Arte S, Brueton LA, Wall SA, Mathijssen IM, Maher ER, Wilkie AO, Kreiborg S, Thesleff I (2011) Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 89:67–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Ethylin Wang Jabs, Dr. Peter J. Taub, and Dr. Alka Mansukhani for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, G. The role of vertebrate models in understanding craniosynostosis. Childs Nerv Syst 28, 1471–1481 (2012). https://doi.org/10.1007/s00381-012-1844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-012-1844-3

Keywords

Navigation