Skip to main content

Advertisement

Log in

Methods of monitoring brain oxygenation

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Posttraumatic brain ischemia or hypoxia is a major potential cause of secondary injury that may lead to poor outcome. Avoidance, or amelioration, of this secondary injury depends on early diagnosis and intervention before permanent injury occurs. However, tools to monitor brain oxygenation continuously in the neuro-intensive care unit have been lacking.

Discussion

In recent times, methods of monitoring aspects of brain oxygenation continuously by the bedside have been evaluated in several experimental and clinical series and are potentially changing the way we manage head-injured patients. These monitors have the potential to alert the clinician to possible secondary injury and enable intervention, help interpret pathophysiological changes (e.g., hyperemia causing raised intracranial pressure), monitor interventions (e.g., hyperventilation for increased intracranial pressure), and prognosticate. This review focuses on jugular venous saturation, brain tissue oxygen tension, and near-infrared spectroscopy as practical methods that may have an important role in managing patients with brain injury, with a particular focus on the available evidence in children. However, to use these monitors effectively and to understand the studies in which these monitors are employed, it is important for the clinician to appreciate the technical characteristics of each monitor, as well as respective strengths and limitations of each. It is equally important that the clinician understands relevant aspects of brain oxygen physiology and head trauma pathophysiology to enable correct interpretation of the monitored data and therefore to direct an appropriate therapeutic response that is likely to benefit, not harm, the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adelson PD, Clyde B, Kochanek PM, Wisniewski SR, Marion DW, Yonas H (1997) Cerebrovascular response in infants and young children following severe traumatic brain injury: a preliminary report. Pediatr Neurosurg 26:200–207

    CAS  PubMed  Google Scholar 

  2. Adelson PD, Nemoto E, Colak A, Painter M (1998) The use of near infrared spectroscopy (NIRS) in children after traumatic brain injury: a preliminary report. Acta Neurochir Suppl 71:250–254

    CAS  PubMed  Google Scholar 

  3. al-Rawi PG, Hutchinson PJ, Gupta AK, Piechnik SK, Pickard JD, Kirkpatrick PJ (2000) Multiparameter brain tissue monitoring—correlation between parameters and identification of CPP thresholds. Zentralbl Neurochir 61:74–79

    CAS  PubMed  Google Scholar 

  4. Al-Rawi PG, Kirkpatrick PJ (2006) Tissue oxygen index: thresholds for cerebral ischemia using near-infrared spectroscopy. Stroke 37:2720–2725

    PubMed  Google Scholar 

  5. Al-Rawi PG, Smielewski P, Kirkpatrick PJ (2001) Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32:2492–2500

    CAS  PubMed  Google Scholar 

  6. Alten J, Mariscalco MM (2005) Critical appraisal of Perez et al: jugular venous oxygen saturation or arteriovenous difference of lactate content and outcome in children with severe traumatic brain injury. Pediatr Crit Care Med 6:480–482

    PubMed  Google Scholar 

  7. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–725

    CAS  PubMed  Google Scholar 

  8. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77:360–368

    CAS  PubMed  Google Scholar 

  9. Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825

    PubMed  Google Scholar 

  10. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW (2007) Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma 24(Suppl 1):S65–S70

    PubMed  Google Scholar 

  11. Bruzzone P, Dionigi R, Bellinzona G, Imberti R, Stocchetti N (1998) Effects of cerebral perfusion pressure on brain tissue PO2 in patients with severe head injury. Acta Neurochir Suppl 71:111–113

    CAS  PubMed  Google Scholar 

  12. Buchner K, Meixensberger J, Dings J, Roosen K (2000) Near-infrared spectroscopy—not useful to monitor cerebral oxygenation after severe brain injury. Zentralbl Neurochir 61:69–73

    CAS  PubMed  Google Scholar 

  13. Carvi y Nievas M, Toktamis S, Hollerhage HG, Haas E (2005) Hyperacute measurement of brain-tissue oxygen, carbon dioxide, pH, and intracranial pressure before, during, and after cerebral angiography in patients with aneurysmatic subarachnoid hemorrhage in poor condition. Surg Neurol 64:362–367 discussion 367

    PubMed  Google Scholar 

  14. Chieregato A, Calzolari F, Trasforini G, Targa L, Latronico N (2003) Normal jugular bulb oxygen saturation. J Neurol Neurosurg Psychiatry 74:784–786

    CAS  PubMed  Google Scholar 

  15. Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23:183–189

    CAS  PubMed  Google Scholar 

  16. Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, Downey SP, Williams GB, Aigbirhio F, Hutchinson PJ, Rice K, Carpenter TA, Clark JC, Pickard JD, Menon DK (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24:202–211

    PubMed  Google Scholar 

  17. Coles JP, Steiner LA, Johnston AJ, Fryer TD, Coleman MR, Smieleweski P, Chatfield DA, Aigbirhio F, Williams GB, Boniface S, Rice K, Clark JC, Pickard JD, Menon DK (2004) Does induced hypertension reduce cerebral ischaemia within the traumatized human brain? Brain 127:2479–2490

    PubMed  Google Scholar 

  18. Coplin WM, O’Keefe GE, Grady MS, Grant GA, March KS, Winn HR, Lam AM (1998) Accuracy of continuous jugular bulb oximetry in the intensive care unit. Neurosurgery 42:533–539 discussion 539–540

    CAS  PubMed  Google Scholar 

  19. Cormio M, Valadka AB, Robertson CS (1999) Elevated jugular venous oxygen saturation after severe head injury. J Neurosurg 90:9–15

    CAS  PubMed  Google Scholar 

  20. Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33:2207–2213

    PubMed  Google Scholar 

  21. Cruz J, Nakayama P, Imamura JH, Rosenfeld KG, de Souza HS, Giorgetti GV (2002) Cerebral extraction of oxygen and intracranial hypertension in severe, acute, pediatric brain trauma: preliminary novel management strategies. Neurosurgery 50:774–779 discussion 779–780

    PubMed  Google Scholar 

  22. Cunningham AS, Salvador R, Coles JP, Chatfield DA, Bradley PG, Johnston AJ, Steiner LA, Fryer TD, Aigbirhio FI, Smielewski P, Williams GB, Carpenter TA, Gillard JH, Pickard JD, Menon DK (2005) Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128:1931–1942

    CAS  PubMed  Google Scholar 

  23. Dings J, Meixensberger J, Amschler J, Hamelbeck B, Roosen K (1996) Brain tissue pO2 in relation to cerebral perfusion pressure, TCD findings and TCD-CO2-reactivity after severe head injury. Acta Neurochir (Wien) 138:425–434

    CAS  Google Scholar 

  24. Diringer MN, Aiyagari V, Zazulia AR, Videen TO, Powers WJ (2007) Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg 106:526–529

    PubMed  Google Scholar 

  25. Doppenberg EM, Watson JC, Broaddus WC, Holloway KL, Young HF, Bullock R (1997) Intraoperative monitoring of substrate delivery during aneurysm and hematoma surgery: initial experience in 16 patients. J Neurosurg 87:809–816

    CAS  PubMed  Google Scholar 

  26. Figaji AA, Fieggen AG, Argent AC, Le Roux PD, Peter JC (2008) Intracranial pressure and cerebral oxygenation changes after decompressive craniectomy in children with severe traumatic brain injury. Acta Neurochir Suppl 102:77–80

    CAS  PubMed  Google Scholar 

  27. Figaji AA, Fieggen AG, Argent AC, Leroux PD, Peter JC (2008) Does adherence to treatment targets in children with severe traumatic brain injury avoid brain hypoxia? A brain tissue oxygenation study. Neurosurgery 63:83–91 discussion 91–92

    PubMed  Google Scholar 

  28. Figaji AA, Zwane E, Thompson C, Fieggen AG, Argent AC, Le Roux PD, Peter JC (2009) Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury: part 1: relationship with outcome. Childs Nerv Syst 25:1325–1333

    PubMed  Google Scholar 

  29. Figaji AA, Zwane E, Thompson C, Fieggen AG, Argent AC, Le Roux PD, Peter JC (2009) Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury: part 2: relationship with clinical, physiological, and treatment factors. Childs Nerv Syst 25:1335–1343

    PubMed  Google Scholar 

  30. Gatto R, Hoffman W, Mueller M, Flores A, Valyi-Nagy T, Charbel FT (2006) Frequency domain near-infrared spectroscopy technique in the assessment of brain oxygenation: a validation study in live subjects and cadavers. J Neurosci Methods 157:274–277

    CAS  PubMed  Google Scholar 

  31. Gelabert-Gonzalez M, Fernandez-Villa JM, Ginesta-Galan V (2002) Intra-operative monitoring of brain tissue O2 (PtiO2) during aneurysm surgery. Acta Neurochir (Wien) 144:863–866 discussion 866–867

    CAS  Google Scholar 

  32. Gomersall CD, Joynt GM, Gin T, Freebairn RC, Stewart IE (1997) Failure of the INVOS 3100 cerebral oximeter to detect complete absence of cerebral blood flow. Crit Care Med 25:1252–1254

    CAS  PubMed  Google Scholar 

  33. Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, McLellan DR (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52:346–350

    CAS  PubMed  Google Scholar 

  34. Gupta AK, Hutchinson PJ, Al-Rawi P, Gupta S, Swart M, Kirkpatrick PJ, Menon DK, Datta AK (1999) Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg 88:549–553

    CAS  PubMed  Google Scholar 

  35. Gupta AK, Hutchinson PJ, Fryer T, Al-Rawi PG, Parry DA, Minhas PS, Kett-White R, Kirkpatrick PJ, Mathews JC, Downey S, Aigbirhio F, Clark J, Pickard JD, Menon DK (2002) Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method. J Neurosurg 96:263–268

    PubMed  Google Scholar 

  36. Hare GM, Mazer CD, Hutchison JS, McLaren AT, Liu E, Rassouli A, Ai J, Shaye RE, Lockwood JA, Hawkins CE, Sikich N, To K, Baker AJ (2007) Severe hemodilutional anemia increases cerebral tissue injury following acute neurotrauma. J Appl Physiol 103:1021–1029

    PubMed  Google Scholar 

  37. Hemphill JC 3rd, Smith WS, Sonne DC, Morabito D, Manley GT (2005) Relationship between brain tissue oxygen tension and CT perfusion: feasibility and initial results. AJNR Am J Neuroradiol 26:1095–1100

    PubMed  Google Scholar 

  38. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906

    PubMed  Google Scholar 

  39. Hoffman WE, Charbel FT, Gonzalez-Portillo G, Ausman JI (1999) Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH. Surg Neurol 51:654–658

    CAS  PubMed  Google Scholar 

  40. Holzschuh M, Woertgen C, Metz C, Brawanski A (1997) Dynamic changes of cerebral oxygenation measured by brain tissue oxygen pressure and near infrared spectroscopy. Neurol Res 19:246–248

    CAS  PubMed  Google Scholar 

  41. Huchzermeyer C, Albus K, Gabriel HJ, Otahal J, Taubenberger N, Heinemann U, Kovacs R, Kann O (2008) Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state. J Neurosci 28:1153–1162

    CAS  PubMed  Google Scholar 

  42. Hull R, Bortfeld H, Koons S (2009) Near-infrared spectroscopy and cortical responses to speech production. Open Neuroimag J 3:26–30

    CAS  PubMed  Google Scholar 

  43. Imberti R, Bellinzona G, Langer M (2002) Cerebral tissue PO2 and SjvO2 changes during moderate hyperventilation in patients with severe traumatic brain injury. J Neurosurg 96:97–102

    PubMed  Google Scholar 

  44. Jaeger M, Soehle M, Meixensberger J (2003) Effects of decompressive craniectomy on brain tissue oxygen in patients with intracranial hypertension. J Neurol Neurosurg Psychiatry 74:513–515

    CAS  PubMed  Google Scholar 

  45. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J (2005) Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir (Wien) 147:51–56 discussion 56

    CAS  Google Scholar 

  46. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    CAS  PubMed  Google Scholar 

  47. Jodicke A, Hubner F, Boker DK (2003) Monitoring of brain tissue oxygenation during aneurysm surgery: prediction of procedure-related ischemic events. J Neurosurg 98:515–523

    PubMed  Google Scholar 

  48. Johnston AJ, Steiner LA, Coles JP, Chatfield DA, Fryer TD, Smielewski P, Hutchinson PJ, O’Connell MT, Al-Rawi PG, Aigbirihio FI, Clark JC, Pickard JD, Gupta AK, Menon DK (2005) Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 33:189–195 discussion 255–257

    PubMed  Google Scholar 

  49. Kakihana Y, Matsunaga A, Tobo K, Isowaki S, Kawakami M, Tsuneyoshi I, Kanmura Y, Tamura M (2002) Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery. Eur J Cardiothorac Surg 21:434–439

    PubMed  Google Scholar 

  50. Kett-White R, Hutchinson PJ, Al-Rawi PG, Czosnyka M, Gupta AK, Pickard JD, Kirkpatrick PJ (2002) Cerebral oxygen and microdialysis monitoring during aneurysm surgery: effects of blood pressure, cerebrospinal fluid drainage, and temporary clipping on infarction. J Neurosurg 96:1013–1019

    PubMed  Google Scholar 

  51. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50:1213–1221 discussion 1221–1222

    PubMed  Google Scholar 

  52. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 85:751–757

    CAS  PubMed  Google Scholar 

  53. Knirsch W, Stutz K, Kretschmar O, Tomaske M, Balmer C, Schmitz A, Berger F, Bauersfeld U, Weiss M, Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics (2008) Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children. Acta Anaesthesiol Scand 52:1370–1374

    Article  CAS  PubMed  Google Scholar 

  54. Kurth CD, McCann JC, Wu J, Miles L, Loepke AW (2009) Cerebral oxygen saturation-time threshold for hypoxic–ischemic injury in piglets. Anesth Analg 108:1268–1277

    PubMed  Google Scholar 

  55. Lang EW, Mulvey JM, Mudaliar Y, Dorsch NW (2007) Direct cerebral oxygenation monitoring—a systematic review of recent publications. Neurosurg Rev 30:99–106 discussion 106–107

    PubMed  Google Scholar 

  56. Latronico N, Beindorf AE, Rasulo FA, Febbrari P, Stefini R, Cornali C, Candiani A (2000) Limits of intermittent jugular bulb oxygen saturation monitoring in the management of severe head trauma patients. Neurosurgery 46:1131–1138 discussion 1138–1139

    CAS  PubMed  Google Scholar 

  57. Leniger-Follert E, Lubbers DW, Wrabetz W (1975) Regulation of local tissue PO2 of the brain cortex at different arterial O2 pressures. Pflugers Arch 359:81–95

    CAS  PubMed  Google Scholar 

  58. Maas AI, Fleckenstein W, de Jong DA, van Santbrink H (1993) Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir Suppl (Wien) 59:50–57

    CAS  Google Scholar 

  59. Macmillan CS, Andrews PJ (2000) Cerebrovenous oxygen saturation monitoring: practical considerations and clinical relevance. Intensive Care Med 26:1028–1036

    CAS  PubMed  Google Scholar 

  60. Macmillan CS, Andrews PJ, Easton VJ (2001) Increased jugular bulb saturation is associated with poor outcome in traumatic brain injury. J Neurol Neurosurg Psychiatry 70:101–104

    CAS  PubMed  Google Scholar 

  61. Magnoni S, Ghisoni L, Locatelli M, Caimi M, Colombo A, Valeriani V, Stocchetti N (2003) Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J Neurosurg 98:952–958

    PubMed  Google Scholar 

  62. Manley GT, Hemphill JC, Morabito D, Derugin N, Erickson V, Pitts LH, Knudson MM (2000) Cerebral oxygenation during hemorrhagic shock: perils of hyperventilation and the therapeutic potential of hypoventilation. J Trauma 48:1025–1032 discussion 1032–1033

    CAS  PubMed  Google Scholar 

  63. Marin-Caballos AJ, Murillo-Cabezas F, Cayuela-Dominguez A, Dominguez-Roldan JM, Rincon-Ferrari MD, Valencia-Anguita J, Flores-Cordero JM, Munoz-Sanchez MA (2005) Cerebral perfusion pressure and risk of brain hypoxia in severe head injury: a prospective observational study. Crit Care 9:R670–R676

    PubMed  Google Scholar 

  64. Marshall RS (2004) The functional relevance of cerebral hemodynamics: why blood flow matters to the injured and recovering brain. Curr Opin Neurol 17:705–709

    PubMed  Google Scholar 

  65. Martini RP, Deem S, Yanez ND, Chesnut RM, Weiss NS, Daniel S, Souter M, Treggiari MM (2009) Management guided by brain tissue oxygen monitoring and outcome following severe traumatic brain injury. J Neurosurg 111:644–649

    PubMed  Google Scholar 

  66. McLeod AD, Igielman F, Elwell C, Cope M, Smith M (2003) Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury. Anesth Analg 97:851–856

    PubMed  Google Scholar 

  67. Meixensberger J, Jaeger M, Vath A, Dings J, Kunze E, Roosen K (2003) Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J Neurol Neurosurg Psychiatry 74:760–764

    CAS  PubMed  Google Scholar 

  68. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD (2004) Diffusion limited oxygen delivery following head injury. Crit Care Med 32:1384–1390

    PubMed  Google Scholar 

  69. Narotam PK, Morrison JF, Nathoo N (2009) Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg 111:672–682

    PubMed  Google Scholar 

  70. Nemoto EM (2000) Jugular bulb hemoglobin oxygen saturation is not a standard for comparison with cerebral oximetry in head injury. Anesthesiology 92:1847–1848

    CAS  PubMed  Google Scholar 

  71. Nemoto EM, Yonas H, Kassam A (2000) Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med 28:1052–1054

    CAS  PubMed  Google Scholar 

  72. Nortje J, Coles JP, Timofeev I, Fryer TD, Aigbirhio FI, Smielewski P, Outtrim JG, Chatfield DA, Pickard JD, Hutchinson PJ, Gupta AK, Menon DK (2008) Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 36:273–281

    CAS  PubMed  Google Scholar 

  73. Perez A, Minces PG, Schnitzler EJ, Agosta GE, Medina SA, Ciraolo CA (2003) Jugular venous oxygen saturation or arteriovenous difference of lactate content and outcome in children with severe traumatic brain injury. Pediatr Crit Care Med 4:33–38

    PubMed  Google Scholar 

  74. Poca MA, Sahuquillo J, Vilalta A, Garnacho A (2007) Lack of utility of arteriojugular venous differences of lactate as a reliable indicator of increased brain anaerobic metabolism in traumatic brain injury. J Neurosurg 106:530–537

    CAS  PubMed  Google Scholar 

  75. Reinert M, Barth A, Rothen HU, Schaller B, Takala J, Seiler RW (2003) Effects of cerebral perfusion pressure and increased fraction of inspired oxygen on brain tissue oxygen, lactate and glucose in patients with severe head injury. Acta Neurochir (Wien) 145:341–349 discussion 349–350

    CAS  Google Scholar 

  76. Rolfe P (2000) In vivo near-infrared spectroscopy. Annu Rev Biomed Eng 2:715–754

    CAS  PubMed  Google Scholar 

  77. Rosenthal G, Hemphill JC 3rd, Sorani M, Martin C, Morabito D, Obrist WD, Manley GT (2008) Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 36:1917–1924

    CAS  PubMed  Google Scholar 

  78. Salim A, Hannon M, Brown C, Hadjizacharia P, Backhus L, Teixeira PG, Chan LS, Ford H (2008) Intracranial pressure monitoring in severe isolated pediatric blunt head trauma. Am Surg 74:1088–1093

    PubMed  Google Scholar 

  79. Scheufler KM, Lehnert A, Rohrborn HJ, Nadstawek J, Thees C (2004) Individual value of brain tissue oxygen pressure, microvascular oxygen saturation, cytochrome redox level, and energy metabolites in detecting critically reduced cerebral energy state during acute changes in global cerebral perfusion. J Neurosurg Anesthesiol 16:210–219

    PubMed  Google Scholar 

  80. Schneider GH, Sarrafzadeh AS, Kiening KL, Bardt TF, Unterberg AW, Lanksch WR (1998) Influence of hyperventilation on brain tissue—PO2, PCO2, and pH in patients with intracranial hypertension. Acta Neurochir Suppl 71:62–65

    CAS  PubMed  Google Scholar 

  81. Schwarz G, Litscher G, Kleinert R, Jobstmann R (1996) Cerebral oximetry in dead subjects. J Neurosurg Anesthesiol 8:189–193

    CAS  PubMed  Google Scholar 

  82. Shafi S, Diaz-Arrastia R, Madden C, Gentilello L (2008) Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma 64:335–340

    PubMed  Google Scholar 

  83. Sharples PM, Storey A, Aynsley-Green A, Eyre JA (1990) Avoidable factors contributing to death of children with head injury. BMJ 300:87–91

    CAS  PubMed  Google Scholar 

  84. Siesjo BK (2008) Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology (1992). J Neurosurg 108:616–631

    PubMed  Google Scholar 

  85. Smith M, Elwell C (2009) Near-infrared spectroscopy: shedding light on the injured brain. Anesth Analg 108:1055–1057

    PubMed  Google Scholar 

  86. Springett RJ, Wylezinska M, Cady EB, Hollis V, Cope M, Delpy DT (2003) The oxygen dependency of cerebral oxidative metabolism in the newborn piglet studied with 31P NMRS and NIRS. Adv Exp Med Biol 530:555–563

    PubMed  Google Scholar 

  87. Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondegui O, Maloney-Wilensky E, Bloom S, Grady MS, LeRoux PD (2005) Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg 103:805–811

    PubMed  Google Scholar 

  88. Stocchetti N, Canavesi K, Magnoni S, Valeriani V, Conte V, Rossi S, Longhi L, Zanier ER, Colombo A (2004) Arterio-jugular difference of oxygen content and outcome after head injury. Anesth Analg 99:230–234

    PubMed  Google Scholar 

  89. Stocchetti N, Chieregato A, De Marchi M, Croci M, Benti R, Grimoldi N (1998) High cerebral perfusion pressure improves low values of local brain tissue O2 tension (PtiO2) in focal lesions. Acta Neurochir Suppl 71:162–165

    CAS  PubMed  Google Scholar 

  90. Subbaswamy A, Hsu AA, Weinstein S, Bell MJ (2009) Correlation of cerebral near-infrared spectroscopy (cNIRS) and neurological markers in critically ill children. Neurocrit Care 10:129–135

    CAS  PubMed  Google Scholar 

  91. Thavasothy M, Broadhead M, Elwell C, Peters M, Smith M (2002) A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 near-infrared spectrophotometers. Anaesthesia 57:999–1006

    CAS  PubMed  Google Scholar 

  92. Timofeev I, Gupta A (2005) Monitoring of head injured patients. Curr Opin Anaesthesiol 18:477–483

    PubMed  Google Scholar 

  93. Tobias JD (2008) Cerebral oximetry monitoring with near infrared spectroscopy detects alterations in oxygenation before pulse oximetry. J Intensive Care Med 23:384–388

    PubMed  Google Scholar 

  94. Tolias CM, Reinert M, Seiler R, Gilman C, Scharf A, Bullock MR (2004) Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg 101:435–444

    PubMed  Google Scholar 

  95. Unterberg AW, Kiening KL, Hartl R, Bardt T, Sarrafzadeh AS, Lanksch WR (1997) Multimodal monitoring in patients with head injury: evaluation of the effects of treatment on cerebral oxygenation. J Trauma 42:S32–S37

    CAS  PubMed  Google Scholar 

  96. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS (1998) Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 26:1576–1581

    CAS  PubMed  Google Scholar 

  97. Valadka AB, Hlatky R, Furuya Y, Robertson CS (2002) Brain tissue PO2: correlation with cerebral blood flow. Acta Neurochir Suppl 81:299–301

    CAS  PubMed  Google Scholar 

  98. van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteeger C, Jansen WJ, Kloos LM, Vermeulen J, Maas AI (2000) Brain oxygen tension in severe head injury. Neurosurgery 46:868–876 discussion 876–878

    PubMed  Google Scholar 

  99. van Santbrink H, Schouten JW, Steyerberg EW, Avezaat CJ, Maas AI (2002) Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir (Wien) 144:1141–1149

    Google Scholar 

  100. Vavilala MS (2007) Cerebral oximetry: patience is a virtue but not a virtue for the patient, yet? Pediatr Crit Care Med 8:192–193

    PubMed  Google Scholar 

  101. Wartenberg KE, Schmidt JM, Mayer SA (2007) Multimodality monitoring in neurocritical care. Crit Care Clin 23:507–538

    CAS  PubMed  Google Scholar 

  102. Zauner A, Bullock R, Di X, Young HF (1995) Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery 37:1168–1176 discussion 1176–1177

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the South Africa–Swedish Links Program/National Research Foundation (GUN 2072790). Dr. Figaji also received a grant from the Integra Foundation for the study of cerebral perfusion pressure thresholds in children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Figaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohlwink, U.K., Figaji, A.A. Methods of monitoring brain oxygenation. Childs Nerv Syst 26, 453–464 (2010). https://doi.org/10.1007/s00381-009-1033-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1033-1

Keywords

Navigation