Skip to main content

Advertisement

Log in

Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objective

In neonatal lambs, the quantitative evidence suggests that a significant volume of cranial CSF drainage is associated with transport along olfactory nerves with absorption primarily into extracranial lymphatics in the paranasal region. Arachnoid granulations appear to be poorly developed at this level of development and their function is unknown. In this report, we tested whether a CSF protein tracer (131I-human serum albumin) could transport directly into the superior sagittal sinus of newborn lambs.

Methods and results

The concentration of the tracer administered into the CSF compartment was measured in the confluence of the intracranial venous sinuses (torcula) and in the peripheral blood (inferior vena cava). Enrichment of the CSF tracer in the cranial venous system was most evident when the CSF-venous sinus pressure gradients approached 20–30 cm H2O.

Conclusion

The data suggests that neonatal CSF can be absorbed directly into the cranial venous system. However, contrary to the classical view, this route may represent an auxiliary system that is recruited to compliment lymphatic transport when intracranial pressures are very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–H
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andres KH, von During M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 175:289–301

    CAS  PubMed  Google Scholar 

  2. Boulton M, Young A, Hay JB, Armstrong D, Flessner M, Schwartz M, Johnston M (1996) Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I-albumin clearance. Neuropathol Appl Neurobiol 22:325–333

    CAS  PubMed  Google Scholar 

  3. Boulton M, Flessner M, Armstrong D, Hay JB, Johnston M (1997) Lymphatic drainage of the CNS: effects of lymphatic diversion/ligation on CSF protein transport to plasma. Am J Physiol 272:R1613–R1619

    CAS  PubMed  Google Scholar 

  4. Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274:R88–R96

    CAS  PubMed  Google Scholar 

  5. Bozanovic-Sosic R, Mollanji R, Johnston MG (2001) Spinal and cranial contributions to total cerebrospinal fluid transport. Am J Physiol 281:R909–R916

    CAS  Google Scholar 

  6. Bradbury MWB, Cserr HF (1985) In: Johnston MG (ed) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. (Experimental biology of the lymphatic circulation 9). Elsevier, Amsterdam, pp 355–394

  7. Caversaccio M, Peschel O, Arnold W (1996) The drainage of cerebrospinal fluid into the lymphatic system of the neck in humans. Otorhinolaryngol Relat Spec 58:164–166

    CAS  Google Scholar 

  8. Chen G, Castro WL, Chow H, Reichlin S (1997) Clearance of 125I-labeled interleukin-6 from brain into blood following intracerebroventricular injection in rats. Endocrinology 138:4830–4836

    CAS  PubMed  Google Scholar 

  9. Clark WL (1920) On the Pacchionian bodies. J Anat 55:40–48

    Google Scholar 

  10. Csanda E, Obal F, Obal F Jr (1983) In: Foldi M, Casley-Smith JR (eds) Central nervous system and lymphatic system. (Lymphangiology.) Schattauer, Stuttgart, pp 475–508

  11. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36:281–303

    Article  PubMed  Google Scholar 

  12. Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39:84–91

    CAS  PubMed  Google Scholar 

  13. Gomez DG, Potts DG, Deonarine V (1974) Arachnoid granulations of the sheep. Arch Neurol 30:169–175

    CAS  PubMed  Google Scholar 

  14. Gomez DG, Ehrmann JE, Potts DG, Pavese AM, Gilanian A (1983) The arachnoid granulation of the newborn human: an ultrastructural study. Int J Dev Neuroscience 1:139–147

    Article  Google Scholar 

  15. Johnston MG, Papaiconomou C (2002) Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci 17:227–230

    CAS  Google Scholar 

  16. Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    CAS  PubMed  Google Scholar 

  17. Löwhagen P, Johansson BB, Nordborg C (1994) The nasal route of cerebrospinal fluid drainage in man. A light-microscopic study. Neuropathol Appl Neurobiol 20:543–550

    PubMed  Google Scholar 

  18. Mann JD, Butler AB, Johnson RN, Bass HB (1979) Clearance of macromolecular and particulate substances from the cerebrospinal fluid system of the rat. J Neurosurg 50:343–348

    CAS  PubMed  Google Scholar 

  19. McComb JG, Davson H, Hyman S, Weiss MH (1982) Cerebrospinal fluid drainage as influenced by ventricular pressure in the rabbit. J Neurosurg 56:790–797

    CAS  PubMed  Google Scholar 

  20. McComb JG, Hyman S, Weiss MH (1984) In: Shapiro K, Marmarou A, Portnoy H (eds) Lymphatic drainage of cerebrospinal fluid in the cat. (Hydrocephalus.) Raven, New York, pp 83–98

  21. Mollanji R, Bozanovic-Sosic R, Silver I, Kim C, Li B, Midha R, Johnston MG (2001) Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol 280:R1573–R1581

    CAS  Google Scholar 

  22. Mollanji R, Papaiconomou C, Boulton M, Midha R, Johnston MG (2001) Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol 281:R1215–R1223

    CAS  Google Scholar 

  23. Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol 282:R1593–R1599

    CAS  Google Scholar 

  24. Osaka K, Handa H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6:26–38

    CAS  PubMed  Google Scholar 

  25. Papaiconomou C, Zakharov A, Bozanovic-Sosic R, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol 283:R869–R876

    CAS  Google Scholar 

  26. Peńa A, Harris NG, Bolton MD, Czosnyka M, Pickard JD (2002) Communicating hydrocephalus: the biomechanics of progressive ventricular enlargement revisited. Acta Neurochir 81:59–63

    Google Scholar 

  27. Pollay M, Welch K (1962) The function and structure of canine arachnoid villi. J Surg Res II:307–311

    Google Scholar 

  28. Potts DG, Reilly KF, Deonarine V (1972) Morphology of the arachnoid villi and granulations. Radiology 105:333–341

    CAS  PubMed  Google Scholar 

  29. Silver I, Li B, Szalai JP, Johnston M (1999) Relationship between intracranial pressure and cervical lymphatic pressure and flow in sheep. Am J Physiol 277:R1712–R1717

    CAS  PubMed  Google Scholar 

  30. Silver I, Kim C, Mollanji R, Johnston M (2002) Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate. Neuropathol Appl Neurobiol 28:67–74

    Article  CAS  PubMed  Google Scholar 

  31. Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83:454–469

    CAS  Google Scholar 

  32. Welch K, Pollay M (1961) Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201:651–654

    CAS  PubMed  Google Scholar 

  33. Weller RO, Kida S, Zhang ET (1992) Pathways of fluid drainage from the brain—morphological aspects and immunological significance in rat and man. Brain Pathol 2:277–284

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Dianna Armstrong and Ms. Beverley Young for technical assistance. This research was funded by a grant from the Canadian Institutes of Health Research (CIHR) and a CIHR/Spina Bifida and Hydrocephalus Association of Canada Doctoral Research Award to C.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaiconomou, C., Zakharov, A., Azizi, N. et al. Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20, 29–36 (2004). https://doi.org/10.1007/s00381-003-0840-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-003-0840-z

Keywords

Navigation