Skip to main content

Advertisement

Log in

Coronary lesion characteristics with mismatch between fractional flow reserve derived from CT and invasive catheterization in clinical practice

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

High diagnostic performance of noninvasive fractional flow reserve computed from CT (FFR-CT) was recently reported in prospective multicenter trials. The aims of this study were to evaluate the diagnostic accuracy of FFR-CT in clinical practice and to examine the lesion characteristics showing a mismatch between FFR-CT and invasive FFR. A total of 20 patients (29 vessels) with suspected coronary artery disease were included. All patients underwent invasive coronary angiography and invasive FFR according to coronary artery CT angiography (CCTA) findings. The same raw data used for CCTA were used to evaluate FFR-CT. Results from FFR-CT were compared with invasively measured FFR. A positive ischemia was defined as FFR <0.80. Analyses from three vessels in two patients were not evaluated because of severe calcification or motion artifacts. The diagnostic accuracy, sensitivity, and specificity of FFR-CT per-vessel basis were 81, 100, and 69 %, respectively. To find the reason for mismatch in positive ischemia, lesion characteristics determined with CCTA were compared between the matched group and the mismatched group. A significant difference in bifurcation lesions with positive remodeling was observed between the matched group and the mismatched group (p < 0.01). The high sensitivity of FFR-CT may provide an additional support to the use of CCTA, although particular attention should be paid when using FFR-CT in bifurcation lesions with positive remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R, Delago A, Min JK (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter accuracy (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol 52(21):1724–1732

    Article  PubMed  Google Scholar 

  2. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA (2008) Diagnostic performance of coronary angiography by 64-row ct. N Engl J Med 359(22):2324–2336

    Article  CAS  PubMed  Google Scholar 

  3. Arbab-Zadeh A, Miller JM, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA (2012) Diagnostic accuracy of computed tomography coronary angiography according to pre-test probability of coronary artery disease and severity of coronary arterial calcification. The core-64 (coronary artery evaluation using 64-row multidetector computed tomography angiography) international multicenter study. J Am Coll Cardiol 59(4):379–387

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F, Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de Feyter PJ (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52(25):2135–2144

    Article  PubMed  Google Scholar 

  5. Takahashi S, Kawasaki M, Miyata S, Suzuki K, Yamaura M, Ido T, Aoyama T, Fujiwara H, Minatoguchi S (2016) Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound. Heart Vessels 31(1):29–37

    Article  PubMed  Google Scholar 

  6. Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, Boersma E, Regar E, van Geuns RJ, de Jaegere PJ, Serruys PW, Krestin GP, de Feyter PJ (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52(8):636–643

    Article  PubMed  Google Scholar 

  7. Schuijf JD, Bax JJ (2008) Ct angiography: an alternative to nuclear perfusion imaging? Heart 94(3):255–257

    Article  PubMed  Google Scholar 

  8. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH (2012) 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines and the society for cardiovascular angiography and interventions. Catheter Cardiovasc Interv 79(3):453–495

    Article  PubMed  Google Scholar 

  9. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708

    Article  CAS  PubMed  Google Scholar 

  10. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  CAS  PubMed  Google Scholar 

  11. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter discover-flow (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58(19):1989–1997

    Article  PubMed  Google Scholar 

  12. Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241

    Article  PubMed  Google Scholar 

  13. Min JK, Berman DS, Budoff MJ, Jaffer FA, Leipsic J, Leon MB, Mancini GB, Mauri L, Schwartz RS, Shaw LJ (2011) Rationale and design of the defacto (determination of fractional flow reserve by anatomic computed tomographic angiography) study. J Cardiovasc Comput Tomogr 5(5):301–309

    Article  PubMed  Google Scholar 

  14. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic ct angiography. JAMA 308(12):1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the nxt trial (analysis of coronary blood flow using ct angiography: Next steps). J Am Coll Cardiol 63(12):1145–1155

    Article  PubMed  Google Scholar 

  16. Miyoshi T, Osawa K, Ito H, Kanazawa S, Kimura T, Shiomi H, Kuribayashi S, Jinzaki M, Kawamura A, Bezerra H, Achenbach S, Norgaard BL (2015) Non-invasive computed fractional flow reserve from computed tomography (ct) for diagnosing coronary artery disease—Japanese results from nxt trial (analysis of coronary blood flow using ct angiography: next steps). Circ J 79(2):406–412

    Article  PubMed  Google Scholar 

  17. Osawa K, Miyoshi T, Koyama Y, Hashimoto K, Sato S, Nakamura K, Nishii N, Kohno K, Morita H, Kanazawa S, Ito H (2014) Additional diagnostic value of first-pass myocardial perfusion imaging without stress when combined with 64-row detector coronary ct angiography in patients with coronary artery disease. Heart 100(13):1008–1015

    Article  PubMed  Google Scholar 

  18. Osawa K, Miyoshi T, Miki T, Koyama Y, Sato S, Kanazawa S, Ito H (2016) Diagnostic performance of first-pass myocardial perfusion imaging without stress with computed tomography (ct) compared with coronary ct angiography alone, with fractional flow reserve as the reference standard. PLoS One 11(2):e0149170

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Int J Cardiovasc Imaging 18(1):539–542

    PubMed  Google Scholar 

  20. Osawa K, Miyoshi T, Yamauchi K, Koyama Y, Nakamura K, Sato S, Kanazawa S, Ito H (2015) Nonalcoholic hepatic steatosis is a strong predictor of high-risk coronary-artery plaques as determined by multidetector ct. PLoS One 10(6):e0131138

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tachibana M, Miyoshi T, Osawa K, Toh N, Oe H, Nakamura K, Naito T, Sato S, Kanazawa S, Ito H (2016) Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Heart Vessels. doi:10.1007/s00380-016-0802-5

    PubMed  Google Scholar 

  22. Osawa K, Miyoshi T, Koyama Y, Sato S, Akagi N, Morimitsu Y, Kubo M, Sugiyama H, Nakamura K, Morita H, Kanazawa S, Ito H (2014) Differential association of visceral adipose tissue with coronary plaque characteristics in patients with and without diabetes mellitus. Cardiovasc Diabetol 13(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gaur S, Achenbach S, Leipsic J, Mauri L, Bezerra HG, Jensen JM, Botker HE, Lassen JF, Norgaard BL (2013) Rationale and design of the heartflownxt (heartflow analysis of coronary blood flow using ct angiography: next steps) study. J Cardiovasc Comput Tomogr 7(5):279–288

    Article  PubMed  Google Scholar 

  24. Peacock J, Jones T, Tock C, Lutz R (1997) An in vitro study on the effect of branch points on the stability of coronary artery flow. Med Eng Phys 19(2):101–108

    Article  CAS  PubMed  Google Scholar 

  25. Gaur S, Ovrehus KA, Dey D, Leipsic J, Botker HE, Jensen JM, Narula J, Ahmadi A, Achenbach S, Ko BS, Christiansen EH, Kaltoft AK, Berman DS, Bezerra H, Lassen JF, Norgaard BL (2016) Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J 37(15):1220–1227

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L, Weigold WG (2009) Scct guidelines for performance of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee. J Cardiovasc Comput Tomogr 3(3):190–204

    Article  PubMed  Google Scholar 

  27. Norgaard BL, Gaur S, Leipsic J, Ito H, Miyoshi T, Park SJ, Zvaigzne L, Tzemos N, Jensen JM, Hansson N, Ko B, Bezerra H, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S (2015) Influence of coronary calcification on the diagnostic performance of ct angiography derived ffr in coronary artery disease: a substudy of the nxt trial. JACC Cardiovasc Imaging 8(9):1045–1055

    Article  PubMed  Google Scholar 

  28. Kimura T, Shiomi H, Kuribayashi S, Isshiki T, Kanazawa S, Ito H, Ikeda S, Forrest B, Zarins CK, Hlatky MA, Norgaard BL (2015) Cost analysis of non-invasive fractional flow reserve derived from coronary computed tomographic angiography in Japan. Cardiovasc Interv Ther 30(1):38–44

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Miyoshi.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osawa, K., Miyoshi, T., Miki, T. et al. Coronary lesion characteristics with mismatch between fractional flow reserve derived from CT and invasive catheterization in clinical practice. Heart Vessels 32, 390–398 (2017). https://doi.org/10.1007/s00380-016-0892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0892-0

Keywords

Navigation