Skip to main content
Log in

Hsp90 and its co-chaperone, Sgt1, as autoantigens in dilated cardiomyopathy

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Recently, it has been suggested that some heat shock proteins such as Hsp70 and Hsp60 are involved in autoimmune diseases including cardiospecific ones. In this work we focused on the involvement of another well known heat shock protein, Hsp90, and its novel co-chaperone, Sgt1, in dilated cardiomyopathy (DCM). We found that the level of autoantibodies against these two proteins was significantly higher in patients with DCM and ischemic heart disease than in sera of healthy donors. We have also analyzed the expression level and subcellular localization of Hsp90 and Sgt1 in diseased myocardia. Using Western blot we found changes in subcellular localization of Hsp90 in the left ventricle of DCM hearts while the total level of this protein remained unchanged. Regarding the Sgt1 protein, we found an increased level in DCM and no changes in subcellular localization. Taken together, our data suggest that Hsp90 and Sgt1 might be involved in the progression of heart failure and might serve as markers for cardiomyopathies of different origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DCM:

Dilated cardiomyopathy

IHD:

Ischemic heart disease

HD:

Healthy donors

NYHA:

New York Heart Association diagnostic criteria in cardiovascular diseases

Hsp:

Heat shock protein

SDS:

Sodium dodecyl sulfate

WHO:

World Health Organization

References

  1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB (2006) Contemporary definitions and classification of the cardiomyopathies. An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816

    Article  PubMed  Google Scholar 

  2. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart diseases—a novel therapeutic target? FASEB J 16:135–146

    Article  PubMed  CAS  Google Scholar 

  3. Narula J, Haider N, Arbustini E, Chandrashekhar Y (2006) Mechanisms of disease: apoptosis in heart failure—seeing hope in death. Nat Clin Pract 3:681–688

    CAS  Google Scholar 

  4. Avrameas S (1991) Natural autoantibodies: from “horror autotoxicus” to “gnothi seauton”. Immunol Today 12:154–159

    PubMed  CAS  Google Scholar 

  5. Xiao H, Wang M, Du Y, Yuan J, Zhao G, Tu D, Liao Y-H (2011) Agonist-like autoantibodies against calcium channel in patients with dilated cardiomyopathy. Heart Vessels. doi:10.1007/s00380-011-0176-7

    Google Scholar 

  6. Nollen EAA, Morimoto R (2002) Chaperoning signaling pathways: molecular chaperons as stress-sensing “heat shock” proteins. J Cell Sci 115:2809–2816

    PubMed  CAS  Google Scholar 

  7. Hayes SA, Dice JF (1996) Roles of molecular chaperones in protein degradation. J Cell Biol 132:255–258

    Article  PubMed  CAS  Google Scholar 

  8. Pockley AG, Bulmer J, Hanks BM, Wright BH (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4:29–35

    Article  PubMed  CAS  Google Scholar 

  9. Gupta S, Knowlton A (2005) Hsp60, Bax, apoptosis and the heart. J Cell Mol Med 9:51–58

    Article  PubMed  CAS  Google Scholar 

  10. Wu T, Tanguay RM (2006) Antibodies against heat shock proteins in environmental stresses and diseases: friend or foe? Cell Stress Chaperones 11:1–12

    Article  PubMed  CAS  Google Scholar 

  11. Latchman DS (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51:637–646

    Article  PubMed  CAS  Google Scholar 

  12. Radford N, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, Gavya S, Wiethoff A, Sherry AD, Mallow CR, Williams RS (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci USA 93:2339–2342

    Article  PubMed  CAS  Google Scholar 

  13. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456

    Article  PubMed  CAS  Google Scholar 

  14. Kovalenko VN, Ryabenko DV, Sidorik LL, Fedorkova OM, Bobyk VI, Kapustian LN (2003) Dilated cardiomyopathy: decreased expression of Hsp70 chaperone in myocardial cytoplasm and mitochondria. Cardiology NIS 1:78–83

    Google Scholar 

  15. Sidorik L, Kyyamova R, Kapustian L, Bobyk V, Rozhko O, Vigontina O, Ryabenko D, Danko I, Maksimchuk O, Filonenko V, Kovalenko VN, Chaschin NA (2005) Molecular chaperon, Hsp60, and cytochrome P450 2E1 co-expression at dilated cardiomyopathy. Cell Biol Intern 29:51–55

    Article  CAS  Google Scholar 

  16. Kapustian L, Rozhko O, Bobyk V, Kroupska I, Ryabenko D, Khozhaenko Yu, Gurtovyy V, Usenko V, Sidorik L (2008) Changes in the content of molecular chaperon Hsp60 in heart tissue at dilated cardiomyopathy. Biopolym Cell 24:234–240 (English version). http://www.biopolymers.org.ua/

  17. Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, Young J, Mann DL (1998) Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol 30:811–818

    Article  PubMed  CAS  Google Scholar 

  18. Latif N, Taylor PM, Khan MA, Yakoub MH, Dunn MJ (1999) The expression of heat shock protein 60 in patients with dilated cardiomyopathy. Basic Res Cardiol 94:112–119

    Article  PubMed  CAS  Google Scholar 

  19. Portig I, Pankuweit S, Maisch B (1997) Antibodies against stress proteins in sera of patients with dilated cardiomyopathy. J Mol Cell Cardiol 29:2245–2251

    Article  PubMed  CAS  Google Scholar 

  20. Patterson C, Cyr D (2002) Welcome to the machine: a cardiologist’s introduction to protein folding and degradation. Circulation 106:2741–2746

    Article  PubMed  Google Scholar 

  21. Lee Y-T, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ (2004) Human Sgt1 binds HSP90 through CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279:16511–16517

    Article  PubMed  CAS  Google Scholar 

  22. Nowotny M, Spiechowicz M, Jastrzhebska B, Filipek A (2003) Calcium-regulated interaction of Sgt1 with S100A6 (Calcyclin) and other S100 proteins. J Biol Chem 278:26923–26928

    Article  PubMed  CAS  Google Scholar 

  23. Matsiota P, Dosquet P, Guilbert B, Avrameas S (1987) Natural autoantibodies in systemic lupus erythematosus. Clin Exp Immunol 69:79–88

    PubMed  CAS  Google Scholar 

  24. Yonezawa N, Nishida E, Sakai H, Koyasu S, Matsuzaki F, Iida K, Yahara I (1988) Purification and characterization of the 90-kDa heat-shock protein from mammalian tissues. Eur J Biochem 177:1–7

    Article  PubMed  CAS  Google Scholar 

  25. Sidorik LL, Gudzera OI, Dragovoz VA, Tukalo MA, Beresten SF (1991) Immunochemical non-cross-reactivity between eukaryotic and prokaryotic seryl-tRNA synthetases. FEBS Lett 292:76–78

    Article  PubMed  CAS  Google Scholar 

  26. Kapustian LN, Rozhko OT, Bobyk VI, Kroupskaya IV, Sidorik LL (2007) Development and characterization of monospecific anti-Sgt1 antibodies. Biopolym Cell 23:495–500 (English version) .http://www.biopolymers.org.ua/

    Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  28. Kadota Y, Shirasu K, Guerois R (2010) NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem Sci 35:199–207

    Article  PubMed  CAS  Google Scholar 

  29. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    Article  PubMed  CAS  Google Scholar 

  30. Pashov A, Kenderov A, Kyurkchiev S, Kehayov I, Hristova S, Lacroix-Desmazes S, Giltiay N, Varamballi S, Kazatchkine MD, Kaveri SV (2002) Autoantibodies to heat shock protein 90 in the human natural antibody repertoire. Int Immunol 14:453–461

    Article  PubMed  CAS  Google Scholar 

  31. Zabka M, Leśniak W, Prus W, Kuźnicki J, Filipek A (2008) Sgt1 has co-chaperone properties and is up-regulated by heat shock. Biochem Biophys Res Commun 370:179–183

    Article  PubMed  CAS  Google Scholar 

  32. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, Weichselbaum R, Nalin C, Alnemri ES, Kufe D, Kharbanda S (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322

    Article  PubMed  CAS  Google Scholar 

  33. Otsuka K, Terasaki F, Shimomura H, Tsukada B, Horii T, Isomura T, Suma H, Shibayama Y, Kitaura Y (2010) Enhanced expression of the ubiquitin–proteasome system in the myocardium from patients with dilated cardiomyopathy referred for left ventriculoplasty: an immunohistochemical study with special reference to oxidative stress. Heart Vessels 25:474–484

    Article  PubMed  Google Scholar 

  34. Spiechowicz M, Zylicz A, Bieganowski P, Kuznicki J, Filipek A (2007) Hsp70 is a new target of Sgt1—an interaction modulated by S100A6. Biochem Biophys Res Commun 357:1148–1153

    Article  PubMed  CAS  Google Scholar 

  35. Prus W, Filipek A (2011) S100A6 mediates nuclear translocation of Sgt1: a heat shock-regulated protein. Amino Acids 41:781–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor J. Kuznicki, International Institute of Molecular and Cell Biology in Warsaw, for support and advice. Also, we thank Dr M. Żabka for providing the recombinant Sgt1 protein. This work was supported by the Joint Ukrainian-Polish grant NM\134-2009 from the Ministry of Education and Science of Ukraine, and by statutory funds from the Nencki Institute of Experimental Biology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Filipek or Lyudmila L. Sidorik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapustian, L.L., Vigontina, O.A., Rozhko, O.T. et al. Hsp90 and its co-chaperone, Sgt1, as autoantigens in dilated cardiomyopathy. Heart Vessels 28, 114–119 (2013). https://doi.org/10.1007/s00380-011-0226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0226-1

Keywords

Navigation