Skip to main content

Advertisement

Log in

Nitric oxide effects depend on different mechanisms in different regions of the rat heart

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The important role of nitric oxide (NO) in regulating cardiac functions has been investigated in prior research. However, NO-induced signaling mechanisms in the different regions of the heart have not been explored until now. In this study, the mechanism of NO effects on the spontaneously beating right atrium and left papillary muscle isolated from the rat heart was examined. The NO donor diethylamine NONOate (DEA/NO) (0.1–100 μM) depressed the resting and developed tensions, as well as the sinus rate, of the right atrium. The effect of DEA/NO on contractions of the right atrium was blocked by the soluble guanylate cyclase (sGC) inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one) (10 μM). The ATP-sensitive potassium channel (KATP) blocker glyburide (3 μM) reversed DEA/NO-induced decreases in the resting tension. The suppressor effect of DEA/NO on the sinus rate was inhibited only by the superoxide radical scavenger superoxide dismutase (25 U/ml). Neither the cGMP-dependent protein kinase (PKG) inhibitor KT5823 (0.1 μM) nor the cAMP-dependent protein kinase (PKA) inhibitor KT5720 (1 μM) changed DEA/NO responses in the right atrium. While the resting tension of the right atrium was decreased by the NO precursor l-arginine (1–100 μM), it was increased by the nitric oxide synthase inhibitor l-NMMA (0.1–100 μM). The sinus rate was not affected by l-arginine or l-NMMA. The left papillary muscle contraction was not influenced by any of these NO-related agents. These results show that high concentration NO-induced depression of the contraction of the right atrium is due to sGC and KATP channel activation, but suppression of the sinus rate depends on redox regulation. Our results may have important implications for the region-dependent functional disability of cardiac myocytes, as well as the regulation of heart performance in high NO-induced pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology pathophysiology and pharmacology. Pharmacol Rev 43(2):109–142

    PubMed  CAS  Google Scholar 

  2. Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79(3):363–380

    PubMed  CAS  Google Scholar 

  3. Shah AM, MacCarthy PA (2000) Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther 86(1):49–86

    Article  PubMed  CAS  Google Scholar 

  4. Sarkar D, Vallance P, Harding SE (2001) Nitric oxide: not just a negative inotrope. Eur J Heart Fail 3(5):527–534

    Article  PubMed  CAS  Google Scholar 

  5. Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35(7):719–729

    Article  PubMed  CAS  Google Scholar 

  6. Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5):388–398

    Article  PubMed  CAS  Google Scholar 

  7. Massion PB, Pelat M, Belge C, Balligand JL (2005) Regulation of the mammalian heart function by nitric oxide. Comp Biochem Physiol A Mol Integr Physiol 142(2):144–150

    Article  PubMed  Google Scholar 

  8. Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75(2):315–326

    Article  PubMed  CAS  Google Scholar 

  9. Endoh M, Yamashita S (1981) Differential responses to carbachol, sodium nitroprusside and 8-bromo-guanosine 3′,5′-monophosphate of canine atrial and ventricular muscle. Br J Pharmacol 73(2):393–399

    PubMed  CAS  Google Scholar 

  10. Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265(1):H176–H182

    PubMed  CAS  Google Scholar 

  11. Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 89(5):2070–2078

    PubMed  CAS  Google Scholar 

  12. Kennedy RH, Hicks KK, Brian JE Jr, Seifen E (1994) Nitric oxide has no chronotropic effect in right atria isolated from rat heart. Eur J Pharmacol 255(1–3):149–156

    Article  PubMed  CAS  Google Scholar 

  13. Mohan P, Sys SU, Brutsaert DL (1995) Positive inotropic effect of nitric oxide in myocardium. Int J Cardiol 50(3):233–237

    Article  PubMed  CAS  Google Scholar 

  14. Mohan P, Brutsaert DL, Paulus WJ, Sys SU (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation 93(6):1223–1229

    PubMed  CAS  Google Scholar 

  15. Wyeth RP, Temma K, Seifen E, Kennedy RH (1996) Negative inotropic actions of nitric oxide require high doses in rat cardiac muscle. Pflugers Arch 432(4):678–684

    Article  PubMed  CAS  Google Scholar 

  16. Preckel B, Kojda G, Schlack W, Ebel D, Kottenberg K, Noack E, Thämer V (1997) Inotropic effects of glyceryl trinitrate and spontaneous NO donors in the dog heart. Circulation 96(8):2675–2682

    PubMed  CAS  Google Scholar 

  17. Kojda G, Kottenberg K, Noack E (1997) Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts. Eur J Pharmacol 334(2):181–190

    Article  PubMed  CAS  Google Scholar 

  18. Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B (1997) Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res 81(1):60–68

    PubMed  CAS  Google Scholar 

  19. Flesch M, Kilter H, Cremers B, Lenz O, Südkamp M, Kuhn-Regnier F, Böhm M (1997) Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther 281(3):1340–1349

    PubMed  CAS  Google Scholar 

  20. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84(9):1020–1031

    PubMed  CAS  Google Scholar 

  21. Choate JK, Paterson DJ (1999) Nitric oxide inhibits the positive chronotropic and inotropic responses to sympathetic nerve stimulation in the isolated guinea-pig atria. J Auton Nerv Syst 75(2):100–108

    Article  PubMed  CAS  Google Scholar 

  22. Müller-Strahl G, Kottenberg K, Zimmer HG, Noack E, Kojda G (2000) Inhibition of nitric oxide synthase augments the positive inotropic effect of nitric oxide donors in the rat heart. J Physiol 522(2):311–320

    Article  PubMed  Google Scholar 

  23. Sarkar D, Vallance P, Amirmansour C, Harding SE (2000) Positive inotropic effects of NO donors in isolated guinea-pig and human cardiomyocytes independent of NO species and cyclic nucleotides. Cardiovasc Res 48(3):430–439

    Article  PubMed  CAS  Google Scholar 

  24. Musialek P, Rigg L, Terrar DA, Paterson DJ, Casadei B (2000) Role of cGMP-inhibited phosphodiesterase and sarcoplasmic calcium in mediating the increase in basal heart rate with nitric oxide donors. J Mol Cell Cardiol 32(10):1831–1840

    Article  PubMed  CAS  Google Scholar 

  25. Joa JC, Tsai LM, Yang SN, Wu HL, Liu DD, Yang JM (2000) Sodium nitroprusside increases pacemaker rhythm of sinoatrial nodes via nitric oxide-cGMP pathway. Chin J Physiol 43(3):113–117

    PubMed  CAS  Google Scholar 

  26. Tatsumi T, Matoba S, Kawahara A, Keira N, Shiraishi J, Akashi K, Kobara M, Tanaka T, Katamura M, Nakagawa C, Ohta B, Shirayama T, Takeda K, Asayama J, Fliss H, Nakagawa M (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol 35(5):1338–1346

    Article  PubMed  CAS  Google Scholar 

  27. Imbrogno S, De Iuri L, Mazza R, Tota B (2001) Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. J Exp Biol 204(10):1719–1727

    PubMed  CAS  Google Scholar 

  28. Wegener JW, Gödecke A, Schrader J, Nawrath H (2002) Effects of nitric oxide donors on cardiac contractility in wild-type and myoglobin-deficient mice. Br J Pharmacol 136(3):415–420

    Article  PubMed  CAS  Google Scholar 

  29. Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540(2):457–467

    Article  PubMed  CAS  Google Scholar 

  30. Worthley MI, Horowitz JD, Zeitz CJ (2005) Lack of inotropic effect of nitric oxide on the rat myocardium. Clin Exp Pharmacol Physiol 32(7):526–530

    Article  PubMed  CAS  Google Scholar 

  31. González DR, Fernández IC, Ordenes PP, Treuer AV, Eller G, Boric MP (2008) Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. Nitric Oxide 18(3):157–167

    Article  PubMed  Google Scholar 

  32. Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41(3):514–523

    Article  PubMed  CAS  Google Scholar 

  33. Wanstall JC, Homer KL, Doggrell SA (2005) Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol 3(1):41–53

    Article  PubMed  CAS  Google Scholar 

  34. Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81(10):779–793

    Article  PubMed  CAS  Google Scholar 

  35. Malinski T (2005) Understanding nitric oxide physiology in the heart: a nanomedical approach. Am J Cardiol 96(7):13–24

    Article  Google Scholar 

  36. Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115(3):509–517

    PubMed  CAS  Google Scholar 

  37. Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321

    Article  PubMed  CAS  Google Scholar 

  38. Nawrath H, Bäumner D, Rupp J, Oelert H (1995) The ineffectiveness of the NO-cyclic GMP signaling pathway in the atrial myocardium. Br J Pharmacol 116(7):3061–3067

    PubMed  CAS  Google Scholar 

  39. MacDonell KL, Diamond J (1997) Cyclic GMP-dependent protein kinase activation in the absence of negative inotropic effects in the rat ventricle. Br J Pharmacol 122(7):1425–1435

    Article  PubMed  CAS  Google Scholar 

  40. Tanaami T, Ishida H, Seguchi H, Hirota Y, Kadono T, Genka C, Nakazawa H, Barry WH (2005) Difference in propagation of Ca2+ release in atrial and ventricular myocytes. Jpn J Physiol 55(2):81–91

    Article  PubMed  CAS  Google Scholar 

  41. Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84(3):266–275

    PubMed  CAS  Google Scholar 

  42. Mooradian DL, Hutsell TC, Keefer LK (1995) Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 25(4):674–678

    Article  PubMed  CAS  Google Scholar 

  43. Schlossmann J, Feil R, Hofmann F (2003) Signaling through NO and cGMP-dependent protein kinases. Ann Med 35(1):21–27

    Article  PubMed  CAS  Google Scholar 

  44. Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99(8):816–828

    Article  PubMed  CAS  Google Scholar 

  45. Kass DA, Takimoto E, Nagayama T, Champion HC (2007) Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res 75(2):303–314

    Article  PubMed  CAS  Google Scholar 

  46. Han J, Kim N, Kim E, Ho WK, Earm YE (2001) Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 276(25):22140–22147

    Article  PubMed  CAS  Google Scholar 

  47. Chen CC, Lin YC, Chen SA, Luk HN, Ding PY, Chang MS, Chiang CE (2000) Shortening of cardiac action potentials in endotoxic shock in guinea pigs is caused by an increase in nitric oxide activity and activation of the adenosine triphosphate-sensitive potassium channel. Crit Care Med 28(6):1713–1720

    Article  PubMed  CAS  Google Scholar 

  48. Nichols CG, Ripoll C, Lederer WJ (1991) ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res 68(1):280–287

    PubMed  CAS  Google Scholar 

  49. Shinbo A, Iijima T (1997) Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol 120(8):1568–1574

    Article  PubMed  CAS  Google Scholar 

  50. Frein D, Schildknecht S, Bachschmid M, Ullrich V (2005) Redox regulation: a new challenge for pharmacology. Biochem Pharmacol 70(6):811–823

    Article  PubMed  CAS  Google Scholar 

  51. Ischiropoulos H, Gow A (2005) Pathophysiological functions of nitric oxide-mediated protein modifications. Toxicology 208(2):299–303

    Article  PubMed  CAS  Google Scholar 

  52. Oyama J, Satoh S, Suematsu N, Kadokami T, Maeda T, Sugano M, Makino N (2010) Scavenging free radicals improves endothelial dysfunction in human coronary arteries in vivo. Heart Vessels 25(5):379–385

    Article  PubMed  Google Scholar 

  53. Herring N, Rigg L, Terrar DA, Paterson DJ (2001) NO-cGMP pathway increases the hyperpolarisation-activated current, I(f), and heart rate during adrenergic stimulation. Cardiovasc Res 52(3):446–453

    Article  PubMed  CAS  Google Scholar 

  54. Yoo S, Lee SH, Choi BH, Yeom JB, Ho WK, Earm YE (1998) Dual effect of nitric oxide on the hyperpolarization-activated inward current (I(f)) in sino-atrial node cells of the rabbit. J Mol Cell Cardiol 30(12):2729–2738

    Article  PubMed  CAS  Google Scholar 

  55. Satoh N, Nishimura M, Watanabe Y (1995) Electrophysiologic alterations in the rabbit nodal cells induced by membrane lipid peroxidation. Eur J Pharmacol 292(3–4):233–240

    PubMed  CAS  Google Scholar 

  56. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54(3):188–195

    Article  PubMed  CAS  Google Scholar 

  57. Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45(5):625–632

    Article  PubMed  CAS  Google Scholar 

  58. Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96(4):1320–1329

    PubMed  CAS  Google Scholar 

  59. Kojda G, Kottenberg K, Nix P, Schlüter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101

    PubMed  CAS  Google Scholar 

  60. Ishibashi T, Hamaguchi M, Kato K, Kawada T, Ohta H, Sasage H, Imai S (1993) Relationship between myoglobin contents and increases in cyclic GMP produced by glyceryl trinitrate and nitric oxide in rabbit aorta, right atrium and papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 347(5):553–561

    Article  PubMed  CAS  Google Scholar 

  61. Price S, Evans TW, Mitchell JA (2002) Nitric oxide supports atrial function in sepsis: relevance to side effects of inhibitors in shock. Eur J Pharmacol 449(3):279–285

    Article  PubMed  CAS  Google Scholar 

  62. Mani AR, Nahavandi A, Moosavi M, Safarinejad R, Dehpour AR (2002) Dual nitric oxide mechanisms of cholestasis-induced bradycardia in the rat. Clin Exp Pharmacol Physiol 29(10):905–908

    Article  PubMed  CAS  Google Scholar 

  63. Balaszczuk AM, Arreche ND, Mc Laughlin M, Arranz C, Fellet AL (2006) Nitric oxide synthases are involved in the modulation of cardiovascular adaptation in hemorrhaged rats. Vasc Pharmacol 44(6):417–426

    Article  CAS  Google Scholar 

  64. Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C (2009) Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24(1):22–26

    Article  PubMed  Google Scholar 

  65. Umar S, van der Laarse A (2010) Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem 333:191–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants 2001-08-09-067 and 09B3330012 from the Ankara University Research Foundation. We are also grateful to Maggie Li for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Demirel-Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derici, K., Samsar, U. & Demirel-Yilmaz, E. Nitric oxide effects depend on different mechanisms in different regions of the rat heart. Heart Vessels 27, 89–97 (2012). https://doi.org/10.1007/s00380-011-0116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0116-6

Keywords

Navigation