Skip to main content

Advertisement

Log in

Expression of heat shock proteins and nitrotyrosine in small arteries from patients with coronary heart disease

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Heat shock proteins (HSPs) have been suggested to play an important role in the pathogenesis of cardiovascular disease; however, their levels in resistance arteries and their role as useful markers for endothelial dysfunction are not well known. In this paper we studied the levels of HSP90, HSP70, HSP60, HSP27, and of the oxidative stress marker nitrotyrosine (NT) in isolated small subcutaneous arteries from female and male patients with coronary heart disease (CHD) and compared them with healthy controls. HSPs and NT levels were analyzed by immunohistochemistry (IHC) with streptavidin-biotin complex and 3,3′-diaminobenzidine (DAB) staining. The results were assessed with a semi-quantitative method. The study showed lower levels of HSP90 in arteries from both male and female patients when compared to the healthy controls, while levels of HSP70 were lower only in male patients versus controls. The levels of HSP60 and HSP27 did not show any significant difference in either the male or the female groups. NT levels were higher in the arteries from female patients as compared to controls. In conclusion, the present study strengthens the concept that HSPs may play an important role in the pathogenesis of CHD, and that at least two of them, HSP70 and HSP90, may have useful applications as markers of vascular dysfunction in resistance arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagstaff MJ, Smith J, Collaco-Moraes J, de Belleroche JS, Voellmy R, Coffin RS, Latchman DS (1998) Delivery of a constitutively active form of the heat shock factor using a virus vector protects neuronal cells from thermal and ischaemic stress but not from apoptosis. Eur J Neurosci 10:3343–3350

    Article  CAS  PubMed  Google Scholar 

  2. Shamaei-Tousi A, Halcox JP, Henderson B (2007) Stressing the obvious? Cell stress and cell stress proteins in cardiovascular disease. Cardiovasc Res 74:19–28

    Article  CAS  PubMed  Google Scholar 

  3. Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K, Lindquist S, Queitsch C (2008). HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci USA 105:2963–2968

    Article  CAS  PubMed  Google Scholar 

  4. Sarto C, Binz PA, Mocarelli P (2000) Heat shock proteins in human cancer. Electrophoresis 21:1218–1226

    Article  CAS  PubMed  Google Scholar 

  5. Park HK, Park EC, Bae SW, Park MY, Kim SW, Yoo HS, Tudev M, Ko YH, Choi YH, Kim S, Kim DI, Kim YW, Lee BB, Yoon JB, Park JE (2006) Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome. Circulation 114:886–893

    Article  CAS  PubMed  Google Scholar 

  6. Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegård J (2000) Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36:303–307

    CAS  PubMed  Google Scholar 

  7. Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105:1012–1017

    Article  CAS  PubMed  Google Scholar 

  8. Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegård J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42:235–238

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi S, Mendelsohn M (2003) Synergistic activation of eNOS by HSP90 and Akt: Calcium-independent endothelial nitric oxide synthase activation by insulin involves formation of an HSP90-Akt-eNOS complex. J Biol Chem 278:30821–30827

    Article  CAS  PubMed  Google Scholar 

  10. Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75:291–302

    Article  CAS  PubMed  Google Scholar 

  11. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666

    Article  CAS  PubMed  Google Scholar 

  12. Agewall S, Heanreh L, Kublickiene K (2006) Endothelial function in conduit and resistance arteries in men with coronary disease. Atherosclerosis 184:130–136

    Article  CAS  PubMed  Google Scholar 

  13. Panagiotakos DB, Pitsavos C, Kourlaba G, Mantas Y, Zombolos S, Kogias Y, Antonoulas A, Stravopodis P, Stefanadis C (2007) Sex related characteristics in hospitalized patients with acute coronary syndromes — the Greek Study of Acute Coronary Syndromes (GREECS). Heart Vessels 22:9–15

    Article  PubMed  Google Scholar 

  14. Mendelsohn M, Karas R (2005) Molecular and cellular basis of cardiovascular gender differences. Science 308:1583–1587

    Article  CAS  PubMed  Google Scholar 

  15. Oda E, Abe m, Kato K, Watanabe K, Veeraveedu PT, Aizawa Y (2006) Gender differences in correlations among cardiovascular risk factors. Gend Med 3:196–205

    Article  PubMed  Google Scholar 

  16. Kotz S, Read CB, Balakrishnan N, Vidakovic B (2006) Encyclopedia of statistical sciences, 2nd edn. Wiley, New Jersey

    Google Scholar 

  17. Xu H, Shi Y, Wang J, Jones D, Weilrauch D, Ying R, Wakim B, Pritchard KA Jr (2007) A heat shock protein 90 binding domain in endothelial nitric-oxide synthase influences enzyme function. J Biol Chem 282:37567–37574

    Article  CAS  PubMed  Google Scholar 

  18. Cruz MN, Luksha L, Logman H, Poston L, Agewall S, Kublickiene K (2006) Acute responses to phytoestrogens in small arteries from men with coronary heart disease. Am J Physiol Heart Circ Physiol 290:1969–1975

    Article  Google Scholar 

  19. Lei H, Venkatakrishnan A, Yu S, Kazlauskas A (2007) Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem 282:9364–9371

    Article  CAS  PubMed  Google Scholar 

  20. Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegård J (2004) Response: is low-heat shock protein 70 a primary or secondary event in the development of atherosclerosis? Hypertension 42:235–238

    Article  Google Scholar 

  21. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053:74–83

    Article  CAS  PubMed  Google Scholar 

  22. Libby P.(2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65:140–146

    Google Scholar 

  23. Plumier JL, Currie RW (1996) Heat Shock-induced myocardial protection against ischemic injury: a role for Hsp70? Cell Stress Chaperones 1:13–17

    Article  CAS  PubMed  Google Scholar 

  24. Chakrabarti S, Lekontseva O, Davidge ST (2008) Estrogen is a modulator of vascular inflammation. IUBMB Life 60:376–382

    Article  CAS  PubMed  Google Scholar 

  25. Xu Q, Hu Y, Kleindienst R, Wick G (1997). Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1. J Clin Invest 100:1089–1097

    Article  CAS  PubMed  Google Scholar 

  26. Wheeler DS, Dunsmore KE, Wong HR (2003). Intracellular delivery of HSP70 using HIV-1 Tat protein transduction domain, Biochem Biophys Res Commun 301:154–159

    Article  Google Scholar 

  27. Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for disease of protein conformation. J Biol Chem 280:33097–33100

    Article  CAS  PubMed  Google Scholar 

  28. Hochleitner BW, Hochleitner EO, Obrist P, Eberl T, Amberger A, Xu Q, Margreiter R, Wick G (2000) Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo. Arterioscler Throm Vasc Biol 20:617–623

    CAS  Google Scholar 

  29. Rabczyński M, Adamiec R (2007) Role of chronic infection and heat shock proteins in peripheral arterial disease. Przgl Lek 64: 419–422

    Google Scholar 

  30. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107:1040–1045

    Article  CAS  PubMed  Google Scholar 

  31. Tune JD (2007) Control of coronary blood flow during hypoxemia. Adv Exp Med Biol 618:25–39

    Article  PubMed  Google Scholar 

  32. Lin L, Kim SC, Wang Y, Gupta S, Davis B, Simon SI, Torre-Amione G, Knowlton AA (2007) HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:2238–2247

    Article  Google Scholar 

  33. Ferns G, Shams S, Shafi S (2006) Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 87:253–274

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Ventura Jl, Nicolas V, Houard X, Blanco-Colio LM, Leclercq A, Egido J, Vranckx R, Michel JB, Meilhac O (2006) Biological significance of decreased HSP27 in human atherosclerosis. Arterioscler Thromb Vasc Biol 26:1337–1343

    Article  CAS  PubMed  Google Scholar 

  35. Wick G (2006) The heat is on: heat-shock proteins and atherosclerosis. Circulation 114:870–872

    Article  PubMed  Google Scholar 

  36. Martin-Ventura JL, Duran MC, Blanco-Colio LM, Meilhac O, Leclercq A, Michel JB, Jensen ON, Hernandez-Merida S, Tuñón J, Vivanco F, Egido J.(2004) Identification by a differential proteomic approach of heat shock protein 27 as a potential marker for atherosclerosis. Circulation 110:2216–2219

    Article  CAS  PubMed  Google Scholar 

  37. Khoynezhad A, Jalali Z, Tortolani AJ (2007) A synopsis of research in cardiac apoptosis and its application to congestive heart failure. Tex Heart Inst J 34:352–359

    PubMed  Google Scholar 

  38. Weinbrenner T, Cladellas M, Isabel Covas M, Fitó M, Tomás M, Sentí M, Bruguera J, Marrugat J (2003) High oxidative stress in patients with stable coronary heart disease. Atherosclerosis 168: 99–106

    Article  CAS  PubMed  Google Scholar 

  39. Haffner SM (2000) Clinical relevance of the oxidative stress concept. Metabolism 49:30–34

    Article  CAS  PubMed  Google Scholar 

  40. Ceconi C., Boraso A., Cargnoni A., Ferrari R (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki K, Nakazato K, Kusakabe T, Nagamine T, Sakurai H, Takatama M (2007) Role of oxidative stress on pathogenesis of hypertensive cerebrovascular lesions. Pathol Int 57:133–139

    Article  CAS  PubMed  Google Scholar 

  42. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina Kublickiene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paier, A., Agewall, S. & Kublickiene, K. Expression of heat shock proteins and nitrotyrosine in small arteries from patients with coronary heart disease. Heart Vessels 24, 260–266 (2009). https://doi.org/10.1007/s00380-008-1117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-008-1117-y

Key words

Navigation