Skip to main content
Log in

Quality assessment and forecast sensitivity of global remote sensing observations

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The satellite-derived wind from cloud and moisture features of geostationary satellites is an important data source for numerical weather prediction (NWP) models. These datasets and global positioning system radio occultation (GPSRO) satellite radiances are assimilated in the four-dimensional variational atmospheric data assimilation system of the UKMO Unified Model in India. This study focuses on the importance of these data in the NWP system and their impact on short-term 24-h forecasts. The quality of the wind observations is compared to the short-range forecast from the model background. The observation increments (observation minus background) are computed as the satellite-derived wind minus the model forecast with a 6-h lead time. The results show the model background has a large easterly wind component compared to satellite observations. The importance of each observation in the analysis is studied using an adjoint-based forecast sensitivity to observation method. The results show that at least around 50% of all types of satellite observations are beneficial. In terms of individual contribution, METEOSAT-7 shows a higher percentage of impact (nearly 50%), as compared to GEOS, MTSAT-2 and METEOSAT-10, all of which have a less than 25% impact. In addition, the impact of GPSRO, infrared atmospheric sounding interferometer (IASI) and atmospheric infrared sounder (AIRS) data is calculated. The GPSRO observations have beneficial impacts up to 50 km. Over the Southern Hemisphere, the high spectral radiances from IASI and AIRS show a greater impact than over the Northern Hemisphere. The results in this study can be used for further improvements in the use of new and existing satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the AQUA mission: Design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing, 41, 253–264.

    Article  Google Scholar 

  • Bonavita, M., 2014: On some aspects of the impact of GPSRO observations in global numerical weather prediction. Quart. J. Roy. Meteor. Soc., 140, 2546–2562, doi: 10.1002/qj.320.

    Article  Google Scholar 

  • Cardinali, C., 2009a: Forecast sensitivity to observation (FSO) as a diagnostic tool. ECMWF Tech. Memo. 599. ECMWF: Reading. [Available online at http://www.ecmwf.int/en/elibrary/8574-forecast-sensitivity-observation-fso-diagnostic-tool.]

    Google Scholar 

  • Cardinali, C., 2009b: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239–250, doi: 10.1002/qj.366.

    Article  Google Scholar 

  • Cardinali, C., and F. Prates, 2011: Performance measurement with advanced diagnostic tools of all-sky microwave imager radiances in 4D-Var. Quart. J. Roy. Meteor. Soc., 137, 2038–2046, doi: 10.1002/qj.865.

    Article  Google Scholar 

  • Collard, A. D., 2004: Assimilation of AIRS Observations at the Met Office. Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, 63–71. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2004/8754-assimilation-airs-observations-met-office.pdf.]

    Google Scholar 

  • Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133, 1977–1991.

    Article  Google Scholar 

  • Collard, A. D., and S. B. Healy, 2003: The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study. Quart. J. Roy. Meteor. Soc., 129, 2741–2760.

    Article  Google Scholar 

  • Cotton, J., 2014: ldNWP SAF AMV monitoring: the 6th Analysis Report (AR6)” No NWPSAF-MO-TR-029 [Available online at https://nwpsaf.eu/monitoring/amv/nwpsaf_motr_029.pdf.]

    Google Scholar 

  • Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387.

    Article  Google Scholar 

  • Dee, D. P., and S. Uppala, 2009: Variational Bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 1830–1841.

    Article  Google Scholar 

  • Eyre, J. R., 2008: An introduction to GPS radio occultation and its use in numerical weather prediction. Proceedings of the ECMWF GRAS SAF Workshop on Applications of GPS Radio Occultation Measurements, 16–18 June, 1–10. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2008/9342-introduction-gps-radio-occultation-and-its-use-numerical-weather-prediction.pdf.]

    Google Scholar 

  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138, 4009–4025, doi: 10.1175/2010MWR3393.1.

    Article  Google Scholar 

  • George, J. P., and Coauthors, 2016: NCUM Data Assimilation System. NMRF/TR/01/2016, 21pp. [Available online at http://www.ncmrwf.gov.in/NCUM-Data%20Assimilation.pdf.]

    Google Scholar 

  • Hayashi, M., and K. Shimoji, 2012: Recent status and development of Atmospheric Motion Vector at JMA. The Proceedings Eleventh International Winds Workshop, Auckland, New Zealand [Available online at http://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2039311.html?lang=EN.]

    Google Scholar 

  • Ingleby, N. B., and A. C. Lorenc, 1993: Bayesian quality control using multivariate normal distributions. Quart. J. Roy. Meteor. Soc., 119, 1195–1225.

    Article  Google Scholar 

  • Isaksen, L., M. Fisher, E. Andersson, and J. Barkmeijer, 2005: The structure and realism of sensitivity perturbations and their interpretation as “Key Analysis”. Quart. J. Roy. Meteor. Soc., 131, 3053–3078.

    Article  Google Scholar 

  • Johnson, C., B. J. Hoskins, N. K. Nichols, and S. P. Ballard, 2006: A singular vector perspective of 4DVAR: The spatial structure and evolution of baroclinic weather systems. Mon. Wea. Rev., 134, 3436–3455, doi: 10.1175/MWR3243.1.

    Article  Google Scholar 

  • Joo, S., A. Lorenc, and R. Marriott, 2012: Diagnosis of exaggerated impacts in adjoint-based sensitivity studies. Forecasting Research Tech. Rep. 564, Met Office, 20pp. [Available online at http://www.metoffice.gov.uk/media/pdf/s/m/FRTR564.pdf.]

    Google Scholar 

  • Joo, S., J. Eyre, and R. Marriott, 2013: The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 3331–3342, doi: 10.1175/MWR-D-12-00232.1.

    Article  Google Scholar 

  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102, 23429–23465, doi: 10.1029/97JD01569.

    Article  Google Scholar 

  • Le Marshall, J., and Coauthors, 2005: Airs hyperspectral data improves Southern Hemisphere forecasts. Aust. Meteor. Mag., 54, 57–60.

    Google Scholar 

  • Lorenc, A. C., 2003: Modelling of error covariances by 4D-Var data assimilation. Quart. J. Roy. Meteor. Soc., 129, 3167–3182.

    Article  Google Scholar 

  • Lorenc, A. C., and O. Hammon, 1988: Objective quality control of observations using Bayesian methods. Theory, and a practical implementation. Quart. J. Roy. Meteor. Soc., 114, 515–543.

    Article  Google Scholar 

  • Lorenc, A. C., and R. T. Marriott, 2014: Forecast sensitivity to observations in the Met Office Global numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 140, 209–224, doi: 10.1002/qj.2122.

    Article  Google Scholar 

  • Lupu, C., C. Cardinali, and A. P. McNally, 2015: Adjoint-based forecast sensitivity applied to observation-error variance tuning. Quart. J. Roy. Meteor. Soc., 141, 3157–3165, doi: 10.1002/qj.2599.

    Article  Google Scholar 

  • Mallick, S., S. Indira Rani, D. Srinivas, and J. P. George, 2016: Assimilation of CrIS hyperspectral radiances in a 4D-VAR assimilation system. Proc. SPIE 9880, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI, 98800Q, New Delhi, India, doi: 10.1117/12.2222775.

    Google Scholar 

  • Marriott, R., et al., 2012: Adjoint-based forecast sensitivity to observation (FSO) and observation impacts. VAR Scientific Documentation Papers 63, Met-Office, UK.

    Google Scholar 

  • Nerry, F., J. Labed, and M. P. Stoll, 1988: Emissivity signatures in the thermal IR band for remote sensing: calibration procedure and method of measurement. Appl. Opt., 27, 758–764.

    Article  Google Scholar 

  • Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud-affected radiances in a cloud-resolving model. Mon. Wea. Rev., 139, 755–773, doi: 10.1175/2010MWR3360.1.

    Article  Google Scholar 

  • Prasad, V. S., 2014: Satellite Data Processing for NCMRWF Unified Model (NCUM), NMRF/RR/02/2014, 17pp. [Available online at http://www.ncmrwf.gov.in/radiance_obstore_ver2.pdf.]

    Google Scholar 

  • Prasad, V. S., and S. Indira Rani, 2014: Data Pre-Processing for NCMRWF Unified Model (NCUM): Version 2. [Available online at http://www.ncmrwf.gov.in/ncum_obstore_v2.pdf.]

    Google Scholar 

  • Prunet, P., J.-N. Thépaut, and V. Cassé, 1998: The information content of clear sky IASI radiances and their potential for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 124, 211–241, doi: 10.1002/qj.49712454510.

    Article  Google Scholar 

  • Rajagopal, E. N., and Coauthors, 2012: Implementation of Unified Model based Analysis-Forecast System at NCMRWF. Internal Report, NMRF/TR/2/2012, National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, India, 1–45. [Available online at http://www.ncmrwf.gov.in/UM_OPS_VAR_Report.pdf.]

    Google Scholar 

  • Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347–362, doi: 10.1002/qj.32.

    Article  Google Scholar 

  • Salisbury, J. W., and D. M. D’Aria, 1992: Infrared (8–14 μm) remote sensing of soil particle size. Remote Sens. Environ., 42, 157–165.

    Article  Google Scholar 

  • Saunders, R., 2001: Assimilation of IASI and AIRS data: Forward modelling. Proceedings of the ECMWF Seminar on Exploitation of the New Generation of Satellite Instruments for NumericalWeather Prediction, ECMWF, Shineld Park, Reading, Berkshire RG2 9AX, UK, 181–200. [Available online at: http://www.ecmwf.int/sites/default/files/elibrary/2000/12103-assimilation-iasi-and-airs-data-forward-modelling.pdf.]

    Google Scholar 

  • Saunders, R., M. Matricardi, and A. Geer, 2010: RTTOV-9 user guide: Science and validation report. EUMETSAT, 31 pp. [Available online at http://nwpsaf.eu/oldsite/deliverables/rtm/rttov9_files/users_guide_9_v1.7.pdf.]

    Google Scholar 

  • Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H. L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108–123.

    Article  Google Scholar 

  • Sharma, P., S. Indira Rani, S. Mallick, D. Srinivas, J. P. George, and M. Gupta, 2016: IASI hyperspectral radiances in the NCMRWF 4D-VAR assimilation system: OSE. Proc. SPIE 9880, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI, 98800P, New Delhi, India, doi: 10.1117/12.2225868.

    Google Scholar 

  • Sherlock, V., 1999: ISEM-6: Infrared Surface Emissivity Model for RTTOV-6. NWP SAF report. [Available online at http://www.metoffice.gov.uk/research/interproj/nwpsaf/rtm/papers/isem6.pdf.]

    Google Scholar 

  • Snyder, W. C., Z. Wan, Y. Zhang, and Y.-Z. Feng, 1998: Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens., 19, 2753–2774.

    Article  Google Scholar 

  • Srinivas, D., S. Indira Rani, S. Mallick, J. P. George, and P. Sharma, 2016: Impact of AIRS radiance in the NCUM 4DVAR assimilation system. Proc. SPIE 9880, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI, 98800O, New Delhi, India, doi: 10.1117/12.2223516.

    Google Scholar 

  • Stiller, O., and S. P. Ballard, 2009: Efficient moist physics schemes for data assimilation. I: Large-scale clouds and condensation. Quart. J. Roy. Meteor. Soc., 135, 707–720.

    Article  Google Scholar 

  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311–1328.

    Article  Google Scholar 

  • Vincensini, A., N. Fourrié, F. Rabier, and V. Guidard, 2012: Data assimilation of IASI radiances over land. Proc. the 18th International Study TOVS Conference, Toulouse, France. [Available online at: https://cimss.ssec.wisc.edu/itwg/itsc/itsc18/program/files/links/4.16_Vincensini_pa.pdf.]

    Google Scholar 

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd Ed., Academic Press, 35 pp.

    Google Scholar 

  • Zhu, Y. Q., and R. Gelaro, 2008: Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon. Wea. Rev., 136, 335–351.

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the advice and help received from the National Centre for Medium Range Weather Forecasting (NCMRWF) scientists while carrying out the initial work at NCMRWF, India. The authors also acknowledge Dr. Peter M. JERMEY from the UKMO and Dr. John P. GEORGE from NCMRWF for helpful discussion. This study was supported by the Korea Meteorological Administration Research and Development Program (Grant No. KMIPA 2015-1090). We appreciate the constructive comments from the two anonymous reviewers and the editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hong Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, S., Dutta, D. & Min, KH. Quality assessment and forecast sensitivity of global remote sensing observations. Adv. Atmos. Sci. 34, 371–382 (2017). https://doi.org/10.1007/s00376-016-6109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6109-8

Key words

Navigation