Skip to main content
Log in

Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Previous studies suggest that spring SST anomalies over the northern tropical Atlantic (NTA) affect the tropical cyclone (TC) activity over the western North Pacific (WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980s. Before the late 1980s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast, after the late 1980s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis, including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M., and J. Scott, 2002: The influence of ENSO on air–sea interaction in the Atlantic. Geophys. Res. Lett., 29, 46-1–46-4, doi: 10.1029/2001GL014347.

    Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, doi: 10.1029/2006JC003798.

  • Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea, 2007: Seasonal tropical cyclone forecasts. WMO Bulletin, 56, 297–309.

    Google Scholar 

  • Cao, X., G. H. Chen, R. H. Huang, and W. Chen, 2014a: The intensity variation of the summer intertropical convergence zone in western North Pacific and its impact on tropical cyclones. Journal of Tropical Meteorology, 20, 193–201.

    Google Scholar 

  • Cao, X., T. Li, M. Peng, W. Chen, and G. H. Chen, 2014b: Effects of monsoon trough interannual variation on tropical cyclogenesis over the western North Pacific. Geophys. Res. Lett., 41, 4332–4339, doi: 10.1002/2014GL060307.

    Article  Google Scholar 

  • Cao, X., T. Li, M. Peng, W. Chen, and G. H. Chen. 2014c: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci., 71, 4639–4660.

    Article  Google Scholar 

  • Cao, X., S. F. Chen, G. H. Chen, W. Chen, and R. G. Wu. 2015: On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western North Pacific: A comparison of 1968–1986 and 1989–2007. Adv. Atmos. Sci., 32, 1319–1328, doi: 10.1007/s00376-015-4256-y.

    Article  Google Scholar 

  • Chan, J. C. L., 1995: Tropical cyclone activity in the western North Pacific in relation to the stratospheric quasi-biennial oscillation. Mon. Wea. Rev., 123, 2567–2571.

    Article  Google Scholar 

  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143–152.

    Article  Google Scholar 

  • Chen, D., H. J. Wang, J. P. Liu, and G. P. Li, 2014: Why the spring North Pacific Oscillation is a predictor of typhoon activity over the Western North Pacific. Int. J. Climatol., 35, 3353–3361, doi: 10.1002/joc.4213.

    Article  Google Scholar 

  • Chen, G. H., and R. H. Huang, 2008: Influence of monsoon over the warm pool on interannual variation on tropical cyclone activity over the western North Pacific. Adv. Atmos. Sci., 25, 319–328, doi: 10.1007/s00376-008-0319-7.

    Article  Google Scholar 

  • Chen, G. H., and C. Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, doi: 10.1029/2009GL041708.

    Google Scholar 

  • Chen, S. F., R. G. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. J. Climate, 28, 485–504.

    Article  Google Scholar 

  • Chen, T. C., S. P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 1080–1090.

    Article  Google Scholar 

  • Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944.

    Article  Google Scholar 

  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631.

    Article  Google Scholar 

  • Choi, K. S., C. C. Wu, and H. R. Byun, 2012: Possible connection between summer tropical cyclone frequency and spring Arctic Oscillation over East Asia. Climate Dyn., 38, 2613–2629.

    Article  Google Scholar 

  • Chu, P. S., and X. Zhao, 2004: Bayesian change-point analysis of tropical cyclone activity: The central North Pacific case. J. Climate, 17, 4893–4901.

    Article  Google Scholar 

  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 1830–1841.

    Article  Google Scholar 

  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern oscillation. Climate Dyn., 38, 1965–1972.

    Article  Google Scholar 

  • Dommenget, D., V. Semenov, and M Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33, L11701, doi: 10.1029/2006GL025871.

    Article  Google Scholar 

  • Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315–322.

    Article  Google Scholar 

  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.

    Article  Google Scholar 

  • Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 5497–5509.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic Hurricane activity: Causes and implications. Science, 293, 474–479.

    Article  Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.

    Article  Google Scholar 

  • Ham, Y. G., J. S. Kug, J. Y. Park, and F. F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geosci., 6, 112–116.

    Article  Google Scholar 

  • Ho, C. H., H. S. Kim, J. H. Jeong, and S. W. Son, 2009: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys. Res. Lett., 36, L06702, doi: 10.1029/2009GL037163.

    Article  Google Scholar 

  • Hsu, P. C., P. S. Chu, H. Murakami, and X. Zhao, 2014: An abrupt decrease in the late-season typhoon activity over the western North pacific. J. Climate, 27, 4296–4312.

    Article  Google Scholar 

  • Huo, L. W., P. W. Guo, S. N. Hameed, and D. C. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 2378–2384, doi: 10.1002/2015GL063184.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632.

    Article  Google Scholar 

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363–376.

    Article  Google Scholar 

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi: 10.1029/2005GL024233.

    Article  Google Scholar 

  • Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515.

    Article  Google Scholar 

  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651.

    Article  Google Scholar 

  • Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 61–94.

    Google Scholar 

  • Losada, T., B. Rodriguez-Fonseca, I. Polo, S. Janicot, S. Gervois, F. Chauvin, and P. Ruti, 2009: Tropical response to the Atlantic equatorial mode: AGCM multimodel approach. Climate Dyn., 33, 45–52.

    Article  Google Scholar 

  • Luo, J. J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proceedings of the National Academy of Sciences of United States of America, 109, 18701–18706.

    Article  Google Scholar 

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43.

    Google Scholar 

  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132–1151.

    Article  Google Scholar 

  • Molinari, J., and D. Vollaro, 2013: What percentage of western North Pacific tropical cyclones form within the monsoon trough? Mon. Wea. Rev., 141, 499–505.

    Article  Google Scholar 

  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241–266.

    Google Scholar 

  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole Mode events on global climate. Climate Research, 25, 151–169.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic Meridional Mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi: 10.1029/2007GL029683.

    Article  Google Scholar 

  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658.

    Article  Google Scholar 

  • Wang, H. J., and K. Fan, 2007: Relationship between the Antarctic oscillation in the western North Pacific typhoon frequency. Chin. Sci. Bull., 52, 561–565.

    Article  Google Scholar 

  • Weng, H. Y., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129.

    Article  Google Scholar 

  • Wu, L., Z. P. Wen, R. H. Huang, and R. G. Wu., 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140–150.

    Article  Google Scholar 

  • Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747.

    Article  Google Scholar 

  • Yang, J. L., Q. Y. Liu, S. P. Xie, Z Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi: 10.1029/2006GL028571.

    Google Scholar 

  • Yang, J. L., Q. Y. Liu, and Z. Y. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 5889–5902, DOI: 10.1175/2010JCLI2962.1.

    Article  Google Scholar 

  • Yeh, S. W., S. K. Kang, B. P. Kirtman, J. H. Kim, M. H. Kwon, and C. H. Kim, 2010: Decadal change in relationship between western North Pacific tropical cyclone frequency and the tropical Pacific SST. Meteor. Atmos. Phys., 106, 179–189.

    Article  Google Scholar 

  • Yoo, S. H., S. Yang, and C. H. Ho, 2006: Variability of the Indian Ocean sea surface temperature and its impacts on Asian- Australian monsoon climate. J. Geophys. Res., 111, D03108, doi: 10.1029/2005JD006001.

    Article  Google Scholar 

  • Yu, J. H., T. Li, Z.M. Tan, and Z.W. Zhu, 2015: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., doi: 10.1007/s00382-015-2618-x.

    Google Scholar 

  • Zhan, R. F., Y. Wang, and X. T. Lei, 2011: Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509–521.

    Article  Google Scholar 

  • Zhan, R. F., Y. Wang, and T. Li, 2014: Intensified impact of East Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 8724–8739.

    Article  Google Scholar 

  • Zhao, X., and P. S. Chu, 2010: Bayesian changepoint analysis for extreme events (typhoons, heavy rainfall, and heat waves): An RJMCMC approach. J. Climate, 23, 1034–1046.

    Article  Google Scholar 

  • Zhou, B. T., and X. Cui, 2008: Hadley circulation signal in the tropical cyclone frequency over the western North Pacific. J. Geophys. Res., 113, D16107, doi: 10.1029/2007JD009156.

    Article  Google Scholar 

  • Zhou, B. T., and X. Cui, 2011: Sea surface temperature east of Australia: A predictor of tropical cyclone frequency over the western North Pacific? Chin. Sci. Bull., 56, 196–201.

    Article  Google Scholar 

  • Zhou, B. T., and X. Cui, 2014: Interdecadal change of the linkage between the North Atlantic Oscillation and the tropical cyclone frequency over the western North Pacific. Science China Earth Sciences, 57, 2148–2155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, S., Chen, G. et al. Intensified impact of northern tropical Atlantic SST on tropical cyclogenesis frequency over the western North Pacific after the late 1980s. Adv. Atmos. Sci. 33, 919–930 (2016). https://doi.org/10.1007/s00376-016-5206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5206-z

Keywords

Navigation