Skip to main content
Log in

Two-moment bulk stratiform cloud microphysics in the grid-point atmospheric model of IAP LASG (GAMIL)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model’s capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation 2. Multiple aerosol types. J. Geophys. Res., 105(D5), 6837–6844.

    Article  Google Scholar 

  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). Journal of Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17(3), 2493–2525.

    Article  Google Scholar 

  • Barahona, D., and A. Nenes, 2008: Parameterization of cirrus cloud formation in large-scale models: Homogeneous nucleation. J. Geophys. Res., 113(D11), doi: 10.1029/2007jd009355.

    Google Scholar 

  • Barahona, D., and A. Nenes, 2009a: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation-monodisperse ice nuclei. Atmos. Chem. Phys., 9(2), 369–381.

    Article  Google Scholar 

  • Barahona, D., and A. Nenes, 2009b: Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation-polydisperse ice nuclei. Atmos. Chem. Phys., 9(16), 5933–5948.

    Article  Google Scholar 

  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. Khattatov, J. F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosolretrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19(11), 2122–2143.

    Article  Google Scholar 

  • Cooper, W. A., 1986: Ice initiation in natural clouds. precipitation enhancement-a scientific challenge. Meteorological Monographs, 21, 29–32.

    Article  Google Scholar 

  • Demott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical-model simulations of cirrus clouds. J. Atmos. Sci., 51(11), 1577–1577.

    Article  Google Scholar 

  • Demott, P. J., D. C. Rogers, and S. M. Kreidenweis, 1997: The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res., 102(D16), 19575–19584.

    Article  Google Scholar 

  • Froyd, K. D., D. M. Murphy, T. J. Sanford, D. S. Thomson, J. C. Wilson, L. Pfister, and L. Lait, 2009: Aerosol composition of the tropical upper troposphere. Atmos. Chem. Phys., 9, 4363–4385.

    Article  Google Scholar 

  • Gensch, I. V., and Coauthors, 2008: Supersaturations, microphysics and nitric acid partitioning in a cold cirrus cloud observed during CR-AVE 2006: An observation-modelling intercomparison study. Environmental Research Letters, 3, doi: 10.1088/1748-9326/3/3/035003.

  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part II: Single-colunm and global results. J. Climate, 21(15), 3660–3679, doi: 10.1175/2008jcli2116.1.

    Article  Google Scholar 

  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model. J. Geophys. Res., 115(D18), D18216, doi: 10.1029/2009jd013797.

    Article  Google Scholar 

  • Ghan, S. J., and S. E. Schwartz, 2007: Aerosol properties and processes—A path from field and laboratory measurements to global climate models. Bull. Amer. Meteor. Soc., 88(7), 1059–1083, doi: 10.1175/Bams-88-7-1059.

    Article  Google Scholar 

  • Ghan, S. J., and Coauthors, 2011: Droplet nucleation: Physically-based parameterizations and comparative Evaluation. Journal of Advances in Modeling Earth Systems, 3(M10001), doi: 10.1029/2011ms000074.

    Google Scholar 

  • Greenwald, T. J., G. L. Stephens, T. H. V. Haar, and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations. J. Geophys. Res., 98, 18471–18488.

    Article  Google Scholar 

  • Hahn, C. J., S. G. Warren, and J. London, 1994: Climatological data for clouds over the globe from surface observations, 1982–1991: The total cloud edition. Tech. Rep., NDP026A, 42pp.

    Google Scholar 

  • Han, Q., W. B. Rossow, J. Chou, and R. W. Welch, 1998: Global variation of column droplet concentration in low-level clouds. Geophys. Res. Lett., 25, 1419–1422.

    Article  Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113(D13103), doi: 10.1029/2008JD009944.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, New York, 996pp.

  • Jensen, E. J., L. Pfister, T. P. Bui, P. Lawson, and D. Baumgardner, 2010: Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos. Chem. Phys., 10(3), 1369–1384.

    Article  Google Scholar 

  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remate Sens., 41, 442–458.

    Article  Google Scholar 

  • Kohler, H., 1921: Zur kondensation des wasserdampfe in der atmosphare. Geofys. Publ., 2, 3–15.

    Google Scholar 

  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9(11), 3505–3522.

    Article  Google Scholar 

  • Li, L., B. Wang, Y. Wang, and H. Wan, 2007: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24(2), 323–335, doi: 10.1007/s00376-007-0323-3.

    Article  Google Scholar 

  • Li, L., Y. Wang, B. Wang, and T. Zhou, 2008: Sensitivity of the grid-point atmospheric model of IAP LASG (GAMIL1.1.0) climate simulations to cloud droplet effective radius and liquid water path. Adv. Atmos. Sci., 25(4), 529–540, doi: 10.1007/s00376-008-0529-z.

    Article  Google Scholar 

  • Li, L., and Coauthors, 2013: Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2). Adv. Atmos. Sci., doi: 10.1007/s00376-013-2157-5.

    Google Scholar 

  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional fluxform semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046–2070.

    Article  Google Scholar 

  • Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of ice microphysics in the NCAR community atmospheric model version 3 (CAM3). J. Climate, 20(18), 4526–4547, doi: 10.1175/Jcli4264.1.

    Article  Google Scholar 

  • Liu, X. H., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14(4), 499–514, doi: 10.1127/0941-2948/2005/0059.

    Article  Google Scholar 

  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748–766.

    Article  Google Scholar 

  • Lohmann, U., 2008: Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys., 8(7), 2115–2131, doi: 10.5194/acp-8-2115-2008.

    Article  Google Scholar 

  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737.

    Article  Google Scholar 

  • Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9(22), 8917–8934.

    Article  Google Scholar 

  • Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys., 7(13), 3425–3446.

    Article  Google Scholar 

  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31(7), 708–721.

    Article  Google Scholar 

  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization.2. The two-moment scheme. Atmospheric Research, 45(1), 3–39.

    Article  Google Scholar 

  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 3683–3704.

    Article  Google Scholar 

  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21(15), 3642–3659, doi: 10.1175/2008jcli2105.1.

    Article  Google Scholar 

  • Nenes, A., and J. H. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108, doi: 10.1029/2002JD002911.

  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64(3), 738–761, doi: 10.1175/Jas3869.1.

    Article  Google Scholar 

  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65(9), 2757–2783, doi: 10.1175/2007jas2546.1.

    Article  Google Scholar 

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Cloud and Precipitation. Springer, New York, 954pp.

    Google Scholar 

  • Rasch, P. J., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 1587–1614.

    Article  Google Scholar 

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287.

    Article  Google Scholar 

  • Salzmann, M., Y. Ming, J.-C. Golaz, P. A. Ginoux, H. Morrison, A. Gettelman, M. Krämer, and L. J. Donner, 2010: Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: Description, evaluation, and sensitivity tests. Atmos. Chem. Phys. Discuss, 10, 6375–6446.

    Article  Google Scholar 

  • Scott, N. A., and Coauthors, 1999: Characteristics of the TOVS pathfinder Path-B dataset. Bull. Amer. Meteor. Soc, 80, 2679–2701.

    Article  Google Scholar 

  • Shi, X.-J., B. Wang, X.-H. Liu, M.-H. Wang, L.-J. Li, and L. Dong, 2010: Aerosol indirect effects on warm clouds in the grid-point atmospheric model of IAP LASG (GAMIL). Atmos. Oceanic Sci. Lett., 3(4), 237–241.

    Google Scholar 

  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113(477), 899–927.

    Article  Google Scholar 

  • Spichtinger, P., and K. M. Gierens, 2009: Modelling of cirrus clouds—Part 2: Competition of different nucleation mechanisms. Atmos. Chem. Phys., 9, 2319–2334.

    Article  Google Scholar 

  • Storelvmo, T., J. E. Kristjansson, and U. Lohmann, 2008: Aerosol influence on mixed-phase clouds in CAMOslo. J. Atmos. Sci., 65, 3214–3230.

    Article  Google Scholar 

  • Storelvmo, T., U. Lohmann, and R. Bennartz, 2009: What governs the spread in shortwave forcings in the transient IPCC AR4 models? Geophys. Res. Lett., 36, doi: 10.1029/2008gl036069.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 779–800.

    Article  Google Scholar 

  • Vavrus, S., and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 5673–5687.

    Article  Google Scholar 

  • Wang, M., and J. E. Penner, 2010: Cirrus clouds in a global climate model with a statistical cirrus cloud scheme. Atmos. Chem. Phys., 10(2), 5449–5474.

    Article  Google Scholar 

  • Weng, F. Z., and N. C. Grody, 1994: Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res, 99, 25535–25551.

    Article  Google Scholar 

  • Wu, Z., and J. Li, 2008: Prediction of the Asian-Australian monsoon interannual variations with the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 25(3), 387–394.

    Article  Google Scholar 

  • Xie, P. P., P. A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Yang, J., B. Wang, Y. Guo, H. Wan, and Z. Ji, 2007: Comparison between GAMIL, and CAM2 on interannual variability simulation. Adv. Atmos. Sci., 24(1), 82–88.

    Article  Google Scholar 

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos.-Ocean, 33, 407–446.

    Article  Google Scholar 

  • Zhang, G. J., and M. Mu, 2005: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the national center for atmospheric research community climate model, version 3. J. Geophys. Res., 110(D9), D09109, doi: 10.1029/2004jd005617.

    Article  Google Scholar 

  • Zhang, K., 2008: Tracer transport evaluation and aerosol simulation with the atmospheric model GAMILLIAM., Ph.D. thesis, Insitute of Atmospheric Physics, Chinese Academy of Sciences, 139pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Shi  (史湘军).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Wang, B., Liu, X. et al. Two-moment bulk stratiform cloud microphysics in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci. 30, 868–883 (2013). https://doi.org/10.1007/s00376-012-2072-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2072-1

Key words

Navigation