Skip to main content
Log in

Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Leymus chinensis and Stipa grandis are two important plant species of temperate steppes in Inner Mongolia of North China. They differ in their life forms, e.g., L. chinensis is a type of rhizomatous clonal grass, whereas S. grandis is a type of tussock grass. Here we hypothesize that both plant species possess distinct nitrogen (N) acquisition strategies for their growth and survival. To test this hypothesis, we conducted a four-factor experimental field study using a short-term (three hours) 15N labeling technique in two plant communities mono-dominated by L. chinensis and S. grandis of the temperate steppes over two months (July and August) and at two soil depths. In both of communities, L. chinensis and S. grandis directly absorbed all three of the common forms of N, including substantial portions of N-derived from glycine (organic and inorganic forms) ranged from 2.7 to 17.8 %, although they absorbed more inorganic N. Nitrogen uptake rates showed significant effects of communities, months, soil depths, and N forms. The uptake rate was higher in August than in July and at 0–5 cm than at 5–15 cm soil depths. L. chinensis and S. grandis showed different preference on N form across months. L. chinensis shifted its uptake pattern from more nitrate (NO3 ) in July to more ammonium (NH4 +) in August, whereas S. grandis took up comparable NH4 + and NO3 in both months. In general, L. chinensis showed a more flexible N acquisition strategy and S. grandis performed a more concentrated and relatively more stable N acquisition strategy. The distinct N acquisition strategies used by L. chinensis and S. grandis varied greatly across different months and soil depths. These findings are more helpful in further understanding the plasticity of nutrient utilization issues of different plant species in response to N-limited conditions of grassland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea, and Pinus in mycorrhizal association with Hebeloma crustiliniforme. New Phytol 103:507–514

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol 112:55–60

    Article  CAS  Google Scholar 

  • Al-Karaki G, Mcmichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Anna W, Hill PW, Vaieretti MV, Farrar JF, Jones DL, Bardgett RD (2014) Challenging the paradigm of nitrogen cycling: no evidence of in situ resource partitioning by coexisting plant species in grasslands of contrasting fertility. Ecol Evol 5:275–287

    Google Scholar 

  • Ashton IW, Miller AE, Bowman WD, Suding KN (2008) Nitrogen preferences and plant-soil feedbacks as influenced by neighbors in the alpine tundra. Oecologia 156:625–636

    Article  CAS  PubMed  Google Scholar 

  • Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260

    Article  PubMed  Google Scholar 

  • Bai W, Sun X, Wang Z, Li L (2009) Nitrogen addition and rhizome severing modify clonal growth and reproductive modes of Leymus chinensis population. Plant Ecol 205:13–21

    Article  Google Scholar 

  • Barber SA (1962) A diffusion and mass-flow concept of soil nutrient availability. Soil Sci 93:39–49

    Article  CAS  Google Scholar 

  • Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic nitrogen inputs to temperate grasslands. Ecology 84:1277–1287

    Article  Google Scholar 

  • Bol R, Ostle NJ, Petzke KJ (2002) Compound specific plant amino acid δ15N values differ with functional plant strategies in temperate grassland. J Soil Sci Plant Nut 165:661–667

    Article  CAS  Google Scholar 

  • Brouwer R (1954) The regulating influence of transpiration and suction tension on the water and salt uptake by the roots of intact Vicia faba plants. Plant Biol 3:264–312

    Google Scholar 

  • Chapin FS III (1995) New cog in the nitrogen cycle. Nature 377:199–200

    Article  CAS  Google Scholar 

  • Chinese Soil Taxonomy Research Group (2001) Index on Chinese soil taxonomy. Univ Sci Technol China, Hefei

    Google Scholar 

  • Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Ström L (2008) Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155:771–783

    Article  PubMed  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Danielson RE, Russell MB (1957) Ion absorption by corn roots as influenced by moisture and aeration. Soil Sci Soc Am Proc 21:3–6

    Article  CAS  Google Scholar 

  • Dijkstra FA, Augustine DJ, Brewer P, Fischer JCV (2012) Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous? Oecologia 170:799–808

    Article  PubMed  Google Scholar 

  • Doust LL (1981) Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. the dynamics of ramets in contrasting habitats. J Ecol 69:743–755

    Article  Google Scholar 

  • Doust LL (1987) Population dynamics and local specialization in a clonal perennial (Ranunculus repens): iii. responses to light and nutrient supply. J Ecol 75:555–568

    Article  Google Scholar 

  • Duke SE, Caldwell MM (2001) Nitrogen acquisition from different spatial distributions by six Great Basin plant species. West N Am Naturalist 61:93–102

    Google Scholar 

  • Engels C, Marschner H (1995) Plant uptake and utilization of nitrogen. In: Bacon P (ed) Nitrogen fertilization in the environment. Marcel Decker, New York, pp 41–81

    Google Scholar 

  • Farrell M, Hill PW, Farrar JF, Bardgett RD, Jones DL (2011) Seasonal variation in soluble soil carbon and nitrogen across a grassland productivity gradient. Soil Biol Biochem 43:835–844

    Article  CAS  Google Scholar 

  • Finlay RD, Frostegård Å, Sonnerfeldt AM (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115

    Article  Google Scholar 

  • Finzi AC, Berthrong ST (2005) The uptake of amino acids by microbes and trees in three cold-temperate forests. Ecology 86:3345–3353

    Article  Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Gao JQ, Yi M, Xu XL, Zhang XW, Yu FH (2014) Spatiotemporal variations affect uptake of inorganic and organic nitrogen by dominant plant species in an alpine wetland. Plant Soil 381:271–278

    Article  CAS  Google Scholar 

  • Gebauer RLE, Ehleringer JR (2000) Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81:1415–1424

    Article  Google Scholar 

  • Gillespie AR (1989) Modelling nutrient flux and interspecies root competition in agroforestry interplantings. Agroforest Syst 8:257–265

    Article  Google Scholar 

  • Gioseffi E, Neergaard AD, Schjoerring JK (2011) Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences 8:11311–11335

    Article  Google Scholar 

  • Gu R, Chao LM, Zhang LX, Su LD, Wan ZQ, Yan YL, Chen YL, Gao QZ (2015) The influence of hydrothermal factors on soil respiration and soil temperature sensitivity of Stipa krylovii steppe, Inner Mongolia Chinese. Acta Pratac Sin 24:21–29

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Harrison KA, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999

    Article  PubMed  Google Scholar 

  • Hill PW, Quilliam RS, Deluca TH, Farrar J, Farrell M, Roberts P, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Acquisition and assimilation of nitrogen as peptide-bound and d-enantiomers of amino acids by wheat. PLoS One 6(4):e19220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Jacob A, Leuschner C (2014) Complementarity in the use of nitrogen forms in a temperate broad-leaved mixed forest. Plant Ecol Divers 8:243–258

    Article  Google Scholar 

  • Jämtgård S, Näsholm T, Huss-Danell K (2010) Nitrogen compounds in soil solution of agricultural land. Soil Biol Biochem 42:2325–2330

    Article  Google Scholar 

  • Johnsson L, Berggren D, Kårén O (1999) Content and bioavailability of organic forms of nitrogen in the O horizon of a podzol. Eur J Soil Sci 50:591–600

    Article  Google Scholar 

  • Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255

    Article  PubMed  Google Scholar 

  • Kahmen A, Livesley SJ, Arndt SK (2009) High potential, but low actual, glycine uptake of dominant plant species in three Australian land-use types with intermediate n availability. Plant Soil 325:109–121

    Article  CAS  Google Scholar 

  • Kaštovská E, Šantrůčková H (2011) Comparison of uptake of different N forms by soil microorganisms and two wet-grassland plants: a pot study. Soil Biol Biochem 43:1285–1291

    Article  Google Scholar 

  • Krom MD, Berner RA (1980) The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine-sediments. Limnol Oceanogra 25:327–337

    Article  CAS  Google Scholar 

  • Lambers H, Iii FSC, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li YH (1988) The divergence and convergence of Aneurolepidium Chinese steppe and Stipa grandis steppe under the grazing influence in Xilin River valley, Inner Mongolia. Chin J Plant Ecol 3:189–196

    Google Scholar 

  • Li J, Ma XF, Guo P, Bao GZ (2007) Studies on clonal plasticity of Leymus chinensis from habitats with different degree of salt and alkali in the Songnen Plain. J Shenyang Normal Univ 25:506–509

    Article  CAS  Google Scholar 

  • Mckane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Brian F, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JL, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in Arctic Tundra. Nature 415:68–71

    Article  CAS  PubMed  Google Scholar 

  • Mederski HJ, Wilson JH (1960) Relation of soil moisture to ion absorption by corn plants. Soil Sci Soc Am Proc 24:149–152

    Article  CAS  Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  Google Scholar 

  • Miller AE, Bowman WD, Katharine Nash S (2007) Plant uptake of inorganic and organic nitrogen: neighbor identity matters. Ecology 88:1832–1840

    Article  PubMed  Google Scholar 

  • Miller AE, Schimel JP, Sickman JO, Skeen K, Meixner T, Melack JM (2009) Seasonal variation in nitrogen uptake and turnover in two high elevation soils: mineralization responses are site-dependent. Biogeochemistry 93:253–270

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Nye PH (1977) The rate-limiting step in plant nutrient absorption from soil. Soil Sci 123:292–297

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci 105:4524–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. a review. Biol Fertil Soils 51:403–415

    Article  CAS  Google Scholar 

  • Pornon A, Nathalie E, Thierry L (2007) Complementarity in mineral nitrogen use among dominant plant species in a subalpine community. Am J Bot 94:1778–1785

    Article  CAS  PubMed  Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1999) Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80:2408–2419

    Article  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schleuss PM, Heitkamp F, Sun Y, Miehe G, Xu XL, Kuzyakov Y (2015) Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau: localization by 15N labeling and implications for a vulnerable ecosystem. Ecosystems 18:1–12

    Article  Google Scholar 

  • Schofield RK, Graham BIJ (1960) Diffusion of ions in soils. Nature 188:195–200

    Article  Google Scholar 

  • Shelden MC, Dong B, de Bruxelles GL, Trevaskis B, Whelan J, Ryan PR, Howitt SM, Udvardi MK (2001) Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil 231:151–160

    Article  CAS  Google Scholar 

  • Soil Survey Staff (1987) Keys to soil taxonomy, 3rd printing. SMSS Tech Monogr No 6. Cornell University, Ithaca, New York

  • Soper FM, Paungfoo-Lonhienne C, Brackin R, Rentsch D, Schmidt S, Robinson N (2011) Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth. Funct Plant Biol 38:788–796

    Article  CAS  Google Scholar 

  • Stefanie VF, Andrew H, Nina B, Niklaus PA, Bernhard S, Michael SL (2009) Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90:1389–1399

    Article  Google Scholar 

  • Stefanie VF, Niklaus PA, Michael SL, Andrew H, Nina B (2012) Do grassland plant communities profit from N partitioning by soil depth? Ecology 93:2386–2396

    Article  Google Scholar 

  • Sun L, Du S, Zhang YC, Liu YH, Sun L, Gegentu JYS (2015) Dynamic analyses of grass yield and nutrition of natural Stipa grandis grassland in Xilinhot. Acta Agres Sin 4:870–873

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and sea: how can it occur? Biogeochemistry 5:7–34

    Article  Google Scholar 

  • Wang Y, Gong JR, Liu M, Luo Q, Xu S, Pan Y, Zhai ZW (2015) Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China. Appl Soil Ecol 96:183–191

    Article  Google Scholar 

  • Wei L, Yu CCS (2014) Uptake of organic nitrogen and preference for inorganic nitrogen by two Australian native Araucariaceae species. Plant Ecol Divers 8:259–264

    Article  Google Scholar 

  • Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635

    Article  PubMed  Google Scholar 

  • Wu ZS, Gu L (2013) The effects of mowing on characteristics of photosynthesis and community water use of Stipa grandis. Dissertation, Inner Mongolia University, Hohhot

  • Xu X, Ouyang H, Cao G, Richter A, Wanek W, Kuzyakov Y (2011a) Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow. Plant Soil 341:495–504

    Article  CAS  Google Scholar 

  • Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y (2011b) Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. J Ecol 99:563–571

    CAS  Google Scholar 

  • Xu X, Li Q, Wang J, Zhang L, Tian S, Lin Z, Li Q, Sun Y (2014) Inorganic and organic nitrogen acquisition by a fern Dicranopteris dichotoma in a subtropical forest in South China. Plos One 9(5):e90075

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye X, Yu F, Dong M (2006) A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann Bot-London 98:187–191

    Article  Google Scholar 

  • Zhao NX, Gao YB, Wang JL, Ren AZ, Wei-Bin R, Chen L, Liu HF (2004) An analysis of genetic differentiation between Stipa grandis populations in Middle and Eastern Inner Mongolia steppe. Acta Ecol Sin 24:2178–2185

    Google Scholar 

  • Zhong Y, Sun W, Bao Q (1998) Effect of mowing on leymus chinensis in typical steppe region. Acta Sci Nat Univ Neimongol 2:202–213

    Google Scholar 

Download references

Acknowledgments

This research was supported by the “National Key Basic Research Program of China” (Grant No. 2014CB138803), the “National Key Research and Development Program of China” (Grant No. 2016YFC0500502), the Fundamental Research Funds for Central Universities (Grant No. 2014KJJCB01) and the State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University (Grant No. 2009-RC-03), National Natural Science Foundation of China (31470560 and 41071209), as well as Central Non-profit Research Institutes Fundamental Research Funds of China (1610332015020) and Natural Science Foundation of Inner Mongolia Autonomous Region of China (2014BS0328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqiang Tian or Xingliang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Tian, Y., Ouyang, S. et al. Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes. Biol Fertil Soils 52, 951–961 (2016). https://doi.org/10.1007/s00374-016-1128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1128-2

Keywords

Navigation