Skip to main content

Advertisement

Log in

Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Returning crop residues to soil is an effective approach for sustaining organic matter concentrations and increasing nutrient availability in soils. A 2-year micro-plot field experiment was conducted in dryland to determine the green manure, straw, and fertilizer nitrogen (N)-15 uptake by wheat, their residual N in soil and losses; the effect of straw application on the fate of N from green manure and vice versa was also determined, as well as the effect of crop residue additions on the fate of fertilizer N. All the micro-plots were treated with the same amount of 15N-labeled or unlabeled fertilizer. The green manure N uptake by wheat, residual N, and N loss were 22.4, 51.7, and 25.9 % of the total added green manure N over the 2-year experiment. Straw addition significantly decreased the green manure residual soil N but increased the cumulative losses. The straw N taken up by wheat, residual N in soil, and N loss were 8.3, 31.0, and 60.7 %, respectively. Green manure addition significantly decreased the straw N taken up by wheat, increased the residual soil N, and reduced the N loss. Furthermore, the fertilizer N taken up by wheat, residual N in soil, and N loss were 32.4, 32.3, and 35.2 %, respectively. Crop residue additions significantly increased the uptake of fertilizer N by wheat in the second year. The application of inorganic N fertilizer in combination with appropriate crop residues may be an effective approach to improve the long-term fertilizer N use efficiency, soil quality, and crop yield in wheat–summer fallow rotation systems in dryland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becker M, Ladha JK (1997) Synchronizing residue N mineralization with rice N demand in flooded conditions. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 231–238

    Google Scholar 

  • Bergstrom L, Kirchmann H (2004) Leaching and crop uptake of nitrogen from nitrogen-15-labelled green manures and ammonium nitrate. J Environ Qual 33:1786–1792

    Article  PubMed  Google Scholar 

  • Blankenau K, Olfs HW, Kuhlmann H (2002) Strategies to improve the use efficiency of mineral fertilizer nitrogen applied to winter wheat. J Agron Crop Sci 188:146–154. doi:10.1046/j.1439-037X.2002.00548.x

    Article  Google Scholar 

  • Bremmer JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, pp 595–624

    Google Scholar 

  • Bussiere F, Cellier P (1994) Modification of the soil–temperature and water-content regimes by a crop residue mulch- experiment and modeling. Agric Forest Meteorol 68:1–28. doi:10.1016/0168-1923(94)90066-3

    Article  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140. doi:10.1639/0044-7447(2002)031[0132:anuean]2.0.co;2

    Article  PubMed  Google Scholar 

  • Chen BQ, Liu EK, Tian QZ, Yan CR, Zhang YQ (2014) Soil nitrogen dynamics and crop residues. A review. Agron Sustain Dev 34:429–442. doi:10.1007/s13593-014-0207-8

    Article  CAS  Google Scholar 

  • Chen XP, Cui ZL, Vitousek PM, Cassman KG, Matson PA, Bai JS, Meng QF, Hou P, Yue SC, Römhelde V, Zhang FS (2011) Integrated soil-crop system management for food security. Proc Natl Acad Sci U S A 108:6399–6404. doi:10.1073/pnas.1101419108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chivenge P, Vanlauwe B, Gentile R, Six J (2011a) Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol Biochem 43:657–666. doi:10.1016/j.soilbio.2010.12.002

    Article  CAS  Google Scholar 

  • Chivenge P, Vanlauwe B, Six J (2011b) Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 342:1–30. doi:10.1007/s11104-010-0626-5

    Article  CAS  Google Scholar 

  • Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr Cycl Agroecosyst 72:101–120. doi:10.1007/s10705-004-6480-1

    Article  CAS  Google Scholar 

  • Cui ZL, Yue SC, Wang GL, Zhang FS, Chen XP (2013) In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environ Sci Technol 47:6015–6022. doi:10.1021/es4003026

    Article  CAS  PubMed  Google Scholar 

  • Douxchamps S, Frossard E, Bernasconi SM, van der Hoek R, Schmidt A, Rao IM, Oberson A (2011) Nitrogen recoveries from organic amendments in crop and soil assessed by isotope techniques under tropical field conditions. Plant Soil 341:179–192. doi:10.1007/s11104-010-0633-6

    Article  CAS  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265. doi:10.1038/24376

    Article  CAS  Google Scholar 

  • Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180. doi:10.1023/a:1023999816690

    Article  CAS  Google Scholar 

  • Ehaliotis C, Cadisch G, Giller KE (1998) Substrate amend ments can alter microbial dynamics and N availability from maize residues to subsequent crops. Soil Biol Biochem 30:1281–1292. doi:10.1016/S0038-0717(98)00035-2

    Article  CAS  Google Scholar 

  • Erisman JW, Bleeker A, Galloway J, Sutton MS (2007) Reduced nitrogen in ecology and the environment. Environ Pollut 150:140–149. doi:10.1016/j.envpol.2007.06.033

    Article  CAS  PubMed  Google Scholar 

  • Fontainea S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. doi:10.1016/S0038-0717(03)00123-8

    Article  Google Scholar 

  • Gentile R, Vanlauwe B, van Kessel C, Six J (2009) Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agric Ecosyst Environ 131:308–314. doi:10.1016/j.agee.2009.02.003

    Article  CAS  Google Scholar 

  • Glendining MJ, Poulton PR, Powlson DS, Macdonald AJ, Jenkinson DS (2001) Availability of the residual nitrogen from a single application of N-15-labelled fertilizer to subsequent crops in a long-term continuous barley experiment. Plant Soil 233:231–239. doi:10.1023/a:1010508914895

    Article  CAS  Google Scholar 

  • Guo SL, Wu JS, Dang TH, Liu WZ, Li Y, Wei WX, Syers JK (2010) Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China. Plant Soil 330:1–13. doi:10.1007/s11104-009-0204-x

    Article  CAS  Google Scholar 

  • Handayanto E, Giller KE, Cadisch G (1997) Regulating N release from legume tree prunings by mixing residues of different quality. Soil Biol Biochem 29:1417–1426. doi:10.1016/s0038-0717(97)00047-3

    Article  CAS  Google Scholar 

  • Hart PBS, Powlson DS, Poulton PR, Johnston AE, Jenkinson DS (1993) The availability of the nitrogen in the crop residues of winter-wheat to subsequent crops. J Agric Sci 121:355–362

    Article  CAS  Google Scholar 

  • Henriksen A, Selmer-Olsen AR (1970) Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95:514–518

    Article  CAS  Google Scholar 

  • Ichir LL, Ismaili M, Hofman G (2003) Recovery of N-15 labelled wheat residue and residual effects of N fertilization in a wheat - wheat cropping system under Mediterranean conditions. Nutr Cycl Agroecosyst 66:201–207. doi:10.1023/a:1023976600760

    Article  CAS  Google Scholar 

  • Janzen HH, Bole JB, Biederbeck VO, Slinkard AE (1990) Fate of N applied as green manure or ammonium fertilizer to soil subsequently cropped with spring wheat at three sites in western Canada. Can J Soil Sci 70:313–323. doi:10.4141/cjss90-032

    Article  CAS  Google Scholar 

  • Jensen LS, Pedersen IS, Hansen TB, Nielsen NE (2000) Turnover and fate of N-15-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur J Agron 12:23–35. doi:10.1016/s1161-0301(99)00040-4

    Article  CAS  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci U S A 106:3041–3046. doi:10.1073/pnas.0813417106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kampradit W et al (2009) Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Res 110:130–138. doi:10.1016/j.fcr.2008.07.011

    Article  Google Scholar 

  • Kirchmann H, Johnston AEJ, Bergstrom LF (2002) Possibilities for reducing nitrate leaching from agricultural land. Ambio 31:404–408. doi:10.1639/0044-7447(2002)031[0404:pfrnlf]2.0.co;2

    Article  PubMed  Google Scholar 

  • Ladd JN, Amato M (1986) The fate of nitrogen from legume and fertilizer sources in soils successively cropped with wheat under field conditions. Soil Biol Biochem 18:417–425. doi:10.1016/0038-0717(86)90048-9

    Article  Google Scholar 

  • Li FC, Wang ZH, Dai J, Li Q, Xue C, Zhao HB, Wang X, Olesen JE (2014) Summer fallow soil management—impact on rainfed winter wheat. Acta Agr Scand B-S P 64:398–407. doi:10.1080/09064710.2014.919347

    Google Scholar 

  • Li SX, Wang ZH, Malhi SS, Li SQ, Gao YJ, Tian XH (2009) Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Adv Agron 102:223–265

    Article  Google Scholar 

  • Liang B, Yang XY, Murphy DV, He XH, Zhou JB (2013) Fate of 15N-labelled fertilizer in soils under dryland agriculture after 19 years of different fertilizations. Biol Fertil Soil 49:977–986. doi:10.1007/s00374-013-0789-3

    Article  CAS  Google Scholar 

  • Liu JG, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186. doi:10.1038/4351179a

    Article  CAS  PubMed  Google Scholar 

  • López-Bellido RJ, López-Bellido L, Castillo JE, López-Bellido FJ (2004) Chickpea response to tillage and soil residual nitrogen in a continuous rotation with wheat: II. Soil nitrate, N uptake and influence on wheat yield. Field Crops Res 88:201–210. doi:10.1016/j.fcr.2004.01.012

    Article  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686. doi:10.1126/science.1159792

    Article  CAS  PubMed  Google Scholar 

  • Myers RJK, Palm CA, Cuevas E, Gunatilleke IUN, Brossard M (1994) The synchronization of nutrient mineralization and plant nutrient demand. In: Woomer PL, Swift MJ (eds) The biological management of tropical soil fertility. Wiley, Chichester, pp 81–116

    Google Scholar 

  • Ortiz Monasterio JI, Sayre KD, Rajaram S, McMahon M (1997) Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci 37:898–904

    Article  Google Scholar 

  • Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42. doi:10.1016/s0167-8809(00)00267-x

    Article  Google Scholar 

  • Pansu M, Thuries L (2003) Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil. Soil Biol Biochem 35:37–48. doi:10.1016/s0038-0717(02)00234-1

    Article  CAS  Google Scholar 

  • Powlson DS, Jenkinson DS, Pruden G, Johnston AE (1985) The effect of straw incorporation on the uptake of nitrogen by winter wheat. J Sci Food Agric 36:26–30. doi:10.1002/jsfa.2740360105

    Article  CAS  Google Scholar 

  • Raun WR, Solie JB, Johnson GV, Stone ML, Mullen RW, Freeman KW, Thomason WE, Lukina EV (2002) Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron J 94:815–820

    Article  Google Scholar 

  • Schwendener CM, Lehmann J, de Camargo PB, Luizao RCC, Fernandes ECM (2005) Nitrogen transfer between high- and low-quality leaves on a nutrient-poor Oxisol determined by N-15 enrichment. Soil Biol Biochem 37:787–794. doi:10.1016/j.soilbio.2004.10.011

    Article  CAS  Google Scholar 

  • Sebilo M, Mayer B, Grably M, Billiou D, Mariotti A (2004) The use of the ‘ammonium diffusion’ method for delta 15N-NH4 + and delta 15N-NO3 measurements: comparison with other techniques. Environ Chem 1:99–103. doi:10.1071/en04037

    Article  CAS  Google Scholar 

  • Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci U S A 110:18185–18189. doi:10.1073/pnas.1305372110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JL, Papendick RI, Bezdicek DF, Lynch JM (1992) Soil organic matter dynamics and crop residue management. In: Metting FB Jr (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, pp 65–94

  • Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302. doi:10.1016/s0065-2113(02)79005-6

    Article  Google Scholar 

  • Yanni SF, Whalen JK, Simpson MJ, Janzen HH (2011) Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues. Soil Biol Biochem 43:63–69. doi:10.1016/j.soilbio.2010.09.012

    Article  CAS  Google Scholar 

  • Zhang SL, Lövdahl L, Grip H, Tong YA, Yang XY, Wang QJ (2009) Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil Till Res 102:78–86. doi:10.1016/j.still.2008.07.019

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Agricultural Research System (CARS-3-1-31), the Agricultural Scientific Research Talent and Team Program, the National Key Basic Research Special Funds under Grant (2015CB150404), the Special Fund for Agro-scientific Research in the Public Interest under Grant (201303104, 201103005), and the National Natural Science Foundation of China (NSFC) (41401330). We would like to thank the editor and three reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, Z., Dai, J. et al. Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland. Biol Fertil Soils 51, 769–780 (2015). https://doi.org/10.1007/s00374-015-1023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1023-2

Keywords

Navigation