Skip to main content

Advertisement

Log in

Temporal variation of the molecular diversity of arbuscular mycorrhizal communities in three different winter cover crop rotational systems

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

A clear understanding of the significance of arbuscular mycorrhizal fungi (AMF) to phosphorus (P) nutrition in intensively managed cover crop rotational systems with soybean [Glycine max (L.) Merr.] will impact how we currently manage these systems, particularly crop rotation decisions. We investigated the impact of wheat (Triticum aestivum L.), rapeseed (Brassica napus L.), or fallow on composition of AMF communities in soil over 2 years of a consecutive soybean rotational system. The composition of AMF communities was characterized on the basis of the large subunit (LSU) ribosomal DNA (rDNA). AMF spore abundance in soil after cultivation of wheat was higher than that after rapeseed or fallow for the all sampling years. Phylogenetic analysis identified 19 AMF phylotypes, including five Glomus; three Gigaspora; two of Acaulospora, Funneliformis, and Rhizophagus; one of Racocetra, Claroideoglomus, Diversispora, and Sclerocystis; and an unknown glomeromycete in soil. Dominant phylotypes of Glomerales occurred widely across the winter cover crop rotations. However, the phylotype richness and diversity of AMF communities were unchanged among crop rotations and years. Redundancy analysis (RDA) demonstrated that AMF communities within a crop rotation were not significantly different. However, when analyzed over a 2-year period, the composition of AMF communities was clearly influenced by year where the distribution of specific AMF phylotypes responded to the winter cover crop management. Thus, diversity of AMF communities in soil was clearly shifted by rotation year, which indicated that other abiotic environmental factors may impact composition AMF communities more than winter cover crop rotational systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alguacil MM, Lozano Z, Campoy M, Roldán A (2010) Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem 42:1114–1122

    Article  CAS  Google Scholar 

  • Alguacil MM, Torres MP, Torrecillas E, Diaz G, Roldán A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173

    Article  CAS  Google Scholar 

  • Alguacil MM, Torrecillas E, Hernández G, Roldán A (2012) Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba) tropical system. PLoS ONE 7:e34887. doi:10.1371/journal.pone.0034887

    Article  CAS  PubMed Central  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: isothiocyanates released from brassica roots inhibit growth of take all fungus. Plant Soil 162:107–112

    Article  CAS  Google Scholar 

  • Balestrini R, Magurno F, Walker C, Lumini E, Bianciotto V (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604

    Article  PubMed  Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105

    Article  Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fertil Soils 48:911–922

    Article  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Brundrett M, Beegher N, Dell B, Groove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monogr 32

  • Buyer JS, Teasdale JR, Roberts DP, Zasada IA, Maul JE (2010) Factor affecting soil microbial community structure in tomato cropping systems. Soil Biol Biochem 42:831–841

    Article  CAS  Google Scholar 

  • Campbell CA, Lafond GP, Zentner RP, Biederbeck VO (1991) Influence of fertilizer and straw baling on soil organic matter in a thick black chernozem in western Canada. Soil Biol Biochem 23:443–446

    Article  CAS  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Clark A (2007) Managing cover crops profitably, 3rd eds. Sustainable agriculture network handbook, vol 9. Sustainable Agriculture Network, Beltsville

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  PubMed  Google Scholar 

  • Douds DD, Johnson NC (2004) Contributions of arbuscular mycorrhizas to soil biological fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Berlin, pp 129–162

    Chapter  Google Scholar 

  • Douds DD, Millner PD (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93

    Article  Google Scholar 

  • Douds DD, Galvez L, Janke RR, Wagoner P (1995) Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agric Ecosyst Environ 52:111–118

    Article  Google Scholar 

  • Duhamel M, Vandenkoornhuyse P (2013) Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends Plant Sci 18:597–600

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonizing roots of the grass species Agrostis capillaries and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:117–135

    Article  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  Google Scholar 

  • Higo M, Isobe K, Kang DJ, Ujiie K, Drijber RA, Ishii R (2010) Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod Sci 13:74–79

    Article  Google Scholar 

  • Higo M, Isobe K, Kang DJ, Maekawa T, Ishii R (2011) Molecular diversity and spore density of indigenous arbuscular mycorrhizal fungi in acid sulfate soil in Thailand. Ann Microbiol 61:383–389

    Article  Google Scholar 

  • Higo M, Isobe K, Yamaguchi M, Drijber RA, Ishii R (2013) Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol Fertil Soils 49:1085–1096

    Article  Google Scholar 

  • Higo M, Isobe K, Drijber RA, Kondo K, Yamaguchi M, Takeyama S, Suzuki Y, Niijima D, Matsuda Y, Ishii R, Torigoe Y (2014) Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean. Biol Fertil Soils. doi:10.1007/s00374-014-0912-0

    Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Holland TC, Bowen P, Bogdanoff C, Hart MM (2014) How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils 50:667–674

    Article  Google Scholar 

  • Isobe K, Tsuboki Y (1999) Effects of winter crops on the density of arbuscular mycorrhizal fungi and the growth of succeeding kidney beans. Jpn J Crop Sci 68:118–125

    Article  Google Scholar 

  • Isobe K, Higo M, Kondo T, Sato N, Takeyama S, Torigoe Y (2014) Effect of winter crop species on arbuscular mycorrhizal fungal colonization and subsequent soybean yields. Plant Prod Sci 17:260–267

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174

    Article  Google Scholar 

  • Karasawa T, Takebe M (2012) Temporal or spatial arrangements of cover crops to promote arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal crops. Plant Soil 353:355–366

    Article  CAS  Google Scholar 

  • Karasawa T, Kasahara Y, Takebe M (2002) Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biol Biochem 34:851–857

    Article  CAS  Google Scholar 

  • Karpouzas DG, Papadopoulou E, Ipsilantis I, Friedel I, Petric I, Udikovic-Kolic N, Djuric S, Kandeler E, Menkissoglu-Spiroudi U, Martin-Laurent F (2014) Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecol Indic 39:44–53

    Article  CAS  Google Scholar 

  • Lehman RM, Taheri WI, Osborne SL, Buyer JS, Douds DD (2012) Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Appl Soil Ecol 61:300–304

    Article  Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  CAS  PubMed  Google Scholar 

  • Lekberg Y, Koide RT, Twomlow SJ (2008) Effect of agricultural management practices on arbuscular mycorrhizal fungal abundance in low-input cropping systems of southern Africa: a case study from Zimbabwe. Biol Fertil Soils 44:917–923

    Article  Google Scholar 

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sorensen SJ, Rosendahl S (2012) 454-Sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Liu Y, He L, An LZ, Helgason T, Feng HY (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiol Ecol 67:81–92

    Article  CAS  PubMed  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • Michalson EL (1999) A history of conservation research in the Pacific Northwest. In: Michalson EL, Papendick RI, Carlson JE (eds) Conservation farming in the United States. The methods and accomplishments of the STEEP Program. CRC, Boca Raton, pp 1–10

    Google Scholar 

  • Miller RM, Jastrow JD (1992) Extraradical hyphal development of vesicular-arbuscular mycorrhizal fungi in a chronosequence of prairie restorations. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Oxon, pp 171–176

    Google Scholar 

  • Ministry of Agriculture, Forestry and Fisheries (2012) Statistical report on agriculture, forestry and fisheries. Available online at http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/menseki/index.html

  • Njeru EM, Avio L, Sbrana C, Turrini A, Bocci G, Bàrberi P, Giovannetti M (2014) First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron Sustain Dev. doi:10.1007/s13593-013-0197-y

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed Central  PubMed  Google Scholar 

  • Oka N, Karasawa T, Okazaki K, Takebe M (2010) Maintenance of soybean yield with reduced phosphorus application by previous cropping with mycorrhizal plants. Soil Sci Plant Nutr 56:824–830

    Article  CAS  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Piotrowski JS, Denich T, Klironomos JN, Graham JM, Rillig MC (2004) The effects of arbuscular mycorrhizae on soil aggregation depend on the interaction between plant and fungal species. New Phytol 164:365–373

    Article  Google Scholar 

  • Rasmussen PE, Albrecht SL, Smiley RW (1998) Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil Tillage Res 47:197–205

    Article  Google Scholar 

  • Reddy KN, Zablotowicz RM, Locke MA, Koger CH (2003) Cover crop, tillage, and herbicide effects on weeds, soil properties, microbial populations, and soybean yield. Weed Sci 51:987–994

    Article  CAS  Google Scholar 

  • Renker C, Weißhuhn K, Kellner H, Buscot F (2006) Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, this is the question. Mycorrhiza 16:525–531

    Article  CAS  PubMed  Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215

    CAS  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Ryan MH, Kirkegaard JA (2012) The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agric Ecosyst Environ 163:37–53

    Article  Google Scholar 

  • Ryan MH, Tibbet M (2008) The role of arbuscular mycorrhizas in organic farming. In: Kirchmann H, Bergström L (eds) Organic crop production: ambition and limitations. Springer, Berlin, pp 189–229

    Chapter  Google Scholar 

  • Ryder MH, Fares A (2008) Evaluating cover crops (Sudex, Sunn Hemp, Oats) for use as vegetative filters to control sediment and nutrient loading from agricultural runoff in a Hawaiian watershed. J Am Water Resour Assoc 44:640–653

    Article  Google Scholar 

  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brassicas. III. In-vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103–112

    Article  CAS  Google Scholar 

  • Sasvári Z, László H, Katalin P (2011) The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture. Biol Fertil Soils 47:167–176

    Article  Google Scholar 

  • Schreiner RP, Koide RT (1993) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–l13

    Article  CAS  Google Scholar 

  • Schreiner RP, Mihara K (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611

    Article  PubMed  Google Scholar 

  • Schweiger PF, Jakobsen I (1999) Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheat. Agron J 91:998–1002

    Article  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Singh PK, Singh M, Tripathi BN (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma 250:663–669

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ter Braak C, Smilauer P (2002) CANOCO reference manual and Canodraw for Windows user’s guide: software for canonical community ordination, 4.5 (Ed). Microcomputer Power, Ithaca

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338

    Article  CAS  PubMed  Google Scholar 

  • Torrecillas E, Alguacil M, Roldán A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous pant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hyhridization. Mycorrhiza 8:203–206

    Article  CAS  Google Scholar 

  • Uchida T, Kobayashi H, Yoshino N (2011) Effects of arbuscular mycorrhizal colonization on soybean nutrient uptake during ripening period with barley cover cropping. Jpn J Crop Sci 80:277–283

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders ER (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Ridgeway K, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Vetrovsky T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1038

    Article  Google Scholar 

  • Vierheilig H, Ocampo JA (1990) Role of root extract and volatile substances of non-host plants on vesicular-arbuscular mycorrhizal spore germination. Symbiosis 9:199–202

    Google Scholar 

  • Vierheilig H, Alt M, Mader P, Boller T, Wiemken A (1995) Spreading of Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus, across the rhizosphere of host and non-host plants. Soil Biol Biochem 27:1113–1115

    Article  CAS  Google Scholar 

  • Wang MY, Hu LB, Wang WH, Liu ST, Li M, Liu RJ (2009) Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizal fungi. Pedosphere 19:663–672

    Article  CAS  Google Scholar 

  • Yasumoto S, Suzuki K, Matsuzaki M, Hiradate S, Oose K, Hirokane H, Okada K (2012) Effects of plant residue, root exudate and juvenile plants of rapeseed (Brassica napus L.) on the germination, growth, yield, and quality of subsequent crops in successive and rotational cropping systems. Plant Prod Sci 14:339–348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Higo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higo, M., Isobe, K., Kondo, T. et al. Temporal variation of the molecular diversity of arbuscular mycorrhizal communities in three different winter cover crop rotational systems. Biol Fertil Soils 51, 21–32 (2015). https://doi.org/10.1007/s00374-014-0945-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0945-4

Keywords

Navigation