Skip to main content

Advertisement

Log in

Effect of land use on the denitrification, abundance of denitrifiers, and total nitrogen gas production in the subtropical region of China

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The potential denitrification (PD) rate, NO, N2O, and N2 emission were determined after treatment with 50 mg NO3 −N kg−1 soil using the acetylene inhibition method, and meanwhile abundance of four denitrifying genes (i.e., narG, nirK, norB, nosZ) was also investigated in subtropical soils of China. Soil samples were collected from conifer forest (C), shrub forest, and farmland. These soils were derived from Quaternary red earth and granite. The PD rate and N gas emissions significantly (p < 0.05) differed between forest and farmland soils; abundance of denitrifying genes was also significantly affected by the land-use change. Correlation and multiple stepwise regression analyses showed that the PD rate was significantly (p < 0.05) and positively correlated with soil pH but not with soil organic C and total N contents (p > 0.05). The norB gene copies in farmland soils were significantly higher than in conifer and shrub forest soils (p < 0.01). Both norB and nosZ gene copies were linearly correlated with soil pH, and the PD rate and N2 emission rate were significantly correlated with the abundance of norB (p < 0.05). Probably, soil pH affected denitrifiers targeted by the norB gene, thus decreasing the reduction of NO and N2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF, Recous S, Le Roux X (2010) Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol 12:315–326. doi:10.1111/j.1462-2920.2009.02070.x

    Article  CAS  PubMed  Google Scholar 

  • Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, Philippot L, Schmid B, Le Roux X (2011) Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob Chang Biol 17:1975–1989. doi:10.1111/j.1365-2486.2010.02340.x

    Article  Google Scholar 

  • Bennema J, Jongeriu A, Lemos RC (1970) Micromorphology of some oxic and argillic horizons in South Brazil in relation to weathering sequences. Geoderma 4:333–355. doi:10.1016/0016-7061(70)90009-1

    Article  CAS  Google Scholar 

  • Boyer EW, Alexander RB, Parton WJ, Li CS, Butterbach-Bahl K, Donner SD, Skaggs RW, Del Gross SJ (2006) Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecol Appl 16:2123–2142. doi:10.1890/1051-0761(2006)016[2123:Mditaa]2.0.Co;2

    Article  PubMed  Google Scholar 

  • Boyle SA, Rich JJ, Bottomley PJ, Cromack K, Myrold DD (2006) Reciprocal transfer effects on denitrifying community composition and activity at forest and meadow sites in the Cascade Mountains of Oregon. Soil Biol Biochem 38:870–878. doi:10.1016/j.soilbio.2005.08.003

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45. doi:10.1097/00010694-194501000-00006

    Article  CAS  Google Scholar 

  • Bremner JM (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55:11–33

    Article  CAS  Google Scholar 

  • Bremner JM, Jenkinson DS (1960) Determination of organic carbon in coil. 1. Soil oxidation by dichromate of organic matter in soil and plant materials. J Soil Sci 11:394–402

    Article  CAS  Google Scholar 

  • Bronner H, Bachler W (1980) Evaluating the nitrogen requirement of sugarbeet from hydrolyzable soil-nitrogen. Soil Sci 130:303–306. doi:10.1097/00010694-198012000-00002

    Article  CAS  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N(2)O? A review. Glob Chang Biol 13:1–17. doi:10.1111/j.1365-2486.2006.01280.x

    Article  Google Scholar 

  • Cheng Y, Zhou WG, Gao CF, Lan K, Gao Y, Wu QY (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781. doi:10.1002/Jctb.2111

    Article  CAS  Google Scholar 

  • Dannenmann M, Butterbach-Bahl K, Gasche R, Willibald G, Papen H (2008) Dinitrogen emissions and the N(2): N(2)O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol Biochem 40:2317–2323. doi:10.1016/j.soilbio.2008.05.009

    Article  CAS  Google Scholar 

  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. American Society of Microbiology, Washington DC, pp 219–235

    Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosys 48:37–50. doi:10.1023/A:1009738715891

    Article  CAS  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11. doi:10.1016/S0929-1393(00)00067-6

    Article  Google Scholar 

  • Editorial Committee of ECA (2005) Encyclopedia of Chinese agriculture. Jiangxi Chinese Press o f Agriculture, Beijing

    Google Scholar 

  • Fang HJ, Yu GR, Cheng SL, Mo JM, Yan JH, Li SG (2009) C-13 abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant Soil 320:243–254. doi:10.1007/s11104-009-9890-7

    Article  CAS  Google Scholar 

  • Firestone MK, Firestone RB, Tiedje JM (1980) Nitrous-oxide from soil denitrification—factors controlling its biological production. Science 208:749–751. doi:10.1126/science.208.4445.749

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Gregory LG, Karakas-Sen A, Richardson DJ, Spiro S (2000) Detection of genes for membrane-bound nitrate reductase in nitrate-respiring bacteria and in community DNA. FEMS Microbiol Lett 183:275–279. doi:10.1111/j.1574-6968.2000.tb08971.x

    Article  CAS  PubMed  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605. doi:10.1038/ismej.2008.128

    Article  CAS  PubMed  Google Scholar 

  • Heinen M (2006) Simplified denitrification models: overview and properties. Geoderma 133:444–463. doi:10.1016/j.geoderma.2005.06.010

    Article  CAS  Google Scholar 

  • Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Meth 59:327–335. doi:10.1016/j.mimet.2004.07.002

    Article  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microb 72:5181–5189. doi:10.1128/Aem.00231-06

    Article  CAS  Google Scholar 

  • Henry S, Texier S, Hallet S, Bru D, Dambreville C, Cheneby D, Bizouard F, Germon JC, Philippot L (2008) Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol 10:3082–3092. doi:10.1111/j.1462-2920.2008.01599.x

    Article  CAS  PubMed  Google Scholar 

  • Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosys 72:267–278. doi:10.1007/s10705-005-3109-y

    Article  Google Scholar 

  • Jäger N, Stange CF, Ludwig B, Flessa H (2011) Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments—a laboratory study. Biol Fertil Soils 47:483–494. doi:10.1007/s00374-011-0553-5

    Article  Google Scholar 

  • Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microb 72:5957–5962. doi:10.1128/Aem.00439-06

    Article  CAS  Google Scholar 

  • Katsuyama C, Kondo N, Suwa Y, Yamagishi T, Itoh M, Ohte N, Kimura H, Nagaosa K, Kato K (2008) Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest. Microbes Environ 23:337–345. doi:10.1264/jsme2.ME08541

    Article  PubMed  Google Scholar 

  • Koskinen WC, Keeney DR (1982) Effect of pH on the rate of gaseous products of denitrification in a silt loam soil. Soil Sci Soc Am J 46:1165–1167

    Article  CAS  Google Scholar 

  • Kralova M (1991) Effect of redox potentials on denitrification in soil. Sci Agric Bohem 23:101–106

    CAS  Google Scholar 

  • Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344:529–531. doi:10.1038/344529a0

    Article  CAS  Google Scholar 

  • Lonborg C, Alvarez-Salgado XA, Davidson K, Miller AEJ (2009) Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populations. Estuar Coast Shelf S 82:682–688. doi:10.1016/j.ecss.2009.02.026

    Article  CAS  Google Scholar 

  • Manconi I, van der Maas P, Lens PNL (2006) Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA(2-) solutions. Nitric Oxide Biol Ch 15:40–49. doi:10.1016/j.niox.2005.11.012

    Article  CAS  Google Scholar 

  • Matson PA, Vitousek PM (1990) Ecosystem approach to a global nitrous-oxide budget. Bioscience 40:667–671. doi:10.2307/1311434

    Article  Google Scholar 

  • Otte S, Grobben NG, Robertson LA, Jetten MSM, Kuenen JG (1996) Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl Environ Microb 62:2421–2426

    CAS  Google Scholar 

  • Parkin TB, Sexstone AJ, Tiedje JM (1985) Adaptation of denitrifying populations to low soil-pH. Appl Environ Microb 49:1053–1056

    CAS  Google Scholar 

  • Ryden JC, Lund LJ, Focht DD (1979) Direct measurement of denitrification loss from soils. 1. Laboratory evaluation of acetylene inhibition of nitrous-oxide reduction. Soil Sci Soc Am J 43:104–110

    Article  CAS  Google Scholar 

  • Simek M, Cooper JE (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur J Soil Sci 53:345–354. doi:10.1046/j.1365-2389.2002.00461.x

    Article  CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microb 73:3612–3622. doi:10.1128/Aem.02894-06

    Article  CAS  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosys 74:207–228. doi:10.1007/s10705-006-9000-7

    Article  CAS  Google Scholar 

  • Sun PP, Zhuge YP, Zhang JB, Cai ZC (2012) Soil pH was the main controlling factor of the denitrification rates and N-2/N2O emission ratios in forest and grassland soils along the Northeast China Transect (NECT). Soil Sci Plant Nutr 58:517–525. doi:10.1080/00380768.2012.703609

    Article  CAS  Google Scholar 

  • Wijler J, Delwiche CC (1954) Investigations on the denitrifying process in soil. Plant Soil 5:155–169. doi:10.1007/Bf01343848

    Article  CAS  Google Scholar 

  • Wolf I, Brumme R (2003) Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils. Soil Sci Soc Am J 67:1862–1868

    Article  CAS  Google Scholar 

  • Wu ZY, Qu CB, Shi XM (2009) Biochemical system analysis of lutein production by heterotrophic Chlorella pyrenoidosa in a fermentor. Food Technol Biotech 47:450–455

    CAS  Google Scholar 

  • Xu YB, Cai ZC (2007) Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. Eur J Soil Sci 58:1293–1303. doi:10.1111/j.1365-2389.2007.00923.x

    Article  CAS  Google Scholar 

  • Xu RK, Zhao AZ, Li QM, Kong XL, Ji GL (2003) Acidity regime of the Red Soils in a subtropical region of southern China under field conditions. Geoderma 115:75–84. doi:10.1016/S0016-7061(03)00077-6

    Article  CAS  Google Scholar 

  • Zagatto EAG, Krug FJ, Bergamin H, Jorgensen SS, Reis BF (1979) Merging zones in flow injection analysis. 2. Determination of calcium, magnesium and potassium in plant material by continuous-flow injection atomic-absorption and flame emission spectrometry. Anal Chim Acta 104:279–284. doi:10.1016/S0003-2670(01)84009-5

    Article  CAS  Google Scholar 

  • Zhang JB, Cai ZC, Cheng Y, Zhu TB (2009) Denitrification and total nitrogen gas production from forest soils of Eastern China. Soil Biol Biochem 41:2551–2557. doi:10.1016/j.soilbio.2009.09.016

    Article  CAS  Google Scholar 

  • Zhang JB, Cai ZC, Zhu TB (2011) N2O production pathways in the subtropical acid forest soils in China. Environ Res 111:643–649. doi:10.1016/j.envres.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Zhao QG, Xie WM, He XY, Wang MZ (1988) Red Soils in Jiangxi. Science and Technology Press of Jiangxi, Nanchang

    Google Scholar 

  • Zhao W, Cai ZC, Xu ZH (2007) Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China? Plant Soil 297:213–221. doi:10.1007/s11104-007-9334-1

    Article  CAS  Google Scholar 

  • Zhou GS, Wang YH, Jiang YL, Xu ZZ (2002) Carbon balance along the Northeast China Transect (NECT-IGBP). Sci China Ser C 45:18–29

    Google Scholar 

  • Zhu ZL, Chen DL (2002) Nitrogen fertilizer use in China—contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys 63:117–127. doi:10.1023/A:1021107026067

    Article  CAS  Google Scholar 

  • Zhu T, Zhang J, Yang W, Cai Z (2012) Effects of organic material amendment and water content on NO, N2O, and N2 emissions in a nitrate-rich vegetable soil. Biol Fertil Soils 49:153–163. doi:10.1007/s00374-012-0711-4

    Article  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol R 61:533–616

    CAS  Google Scholar 

Download references

Acknowledgments

This work is founded by Projects of National Natural Science Foundation of China (41222005, 41271255), Major Program of Natural Science Research of Jiangsu Higher Education Institutions (12KJA170001), and the Academic Priority Development Program of Jiangsu Higher Education Institutions (164320H101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Zhang, J., Chen, W. et al. Effect of land use on the denitrification, abundance of denitrifiers, and total nitrogen gas production in the subtropical region of China. Biol Fertil Soils 50, 105–113 (2014). https://doi.org/10.1007/s00374-013-0839-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0839-x

Keywords

Navigation