Skip to main content
Log in

Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe)

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We investigated the role of gibberellins-producing endophyte Penicillium janthinellum LK5 associated with Solanum lycopersicum (host), abscisic acid (ABA)-deficient tomato mutant Sitiens and its wild-type Rheinlands Ruhm (Rhe) plants under cadmium (Cd) stress. A 100-μM Cd application to host, Sitiens and Rhe reduced the shoot growth, chlorophyll content and stomatal conductance. However, these parameters were significantly (P < 0.0011) higher (1.0- to 2.6-folds) in host, Sitiens and Rhe under endophytic association than in non-endophyte infected plants (control) under Cd stress. Furthermore, endophytic association minimized the Cd-induced membrane injury and oxidative stress to host, Sitiens and Rhe plants by reducing electrolytes and lipid peroxidation while increasing the content of reduced glutathione and catalase activities as compared to non-endophyte-infected plants. Stress-responsive ABA content significantly increased (∼2-folds) in Sitiens and Rhe under endophyte association, while in host plants it was decreased under Cd stress. Salicylic acid content was ∼ 1.7-fold higher in host, Sitiens and Rhe plants under Cd stress and endophyte association than in the control. Besides gibberellins production, the endophyte has the potential to solubilize phosphates (12.73 ± 0.24 mg/l) since higher P was observed in the roots of Sitiens, Rhe and host plants. Similarly, nutrients like sulfur and calcium were more efficiently assimilated in roots of endophyte-associated plants than control under Cd stress. Conversely, Cd accumulation was significantly decreased (P < 0.001) in the roots of endophyte-inoculated host, Sitiens and Rhe than control. In conclusion, endophyte symbiosis can counteract heavy metal stress which can exert negative effects on plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–127

    CAS  PubMed  Google Scholar 

  • Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ames BN (1964) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Google Scholar 

  • Barret M, Morrissey JP, Gara FO (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Baryle A, Crrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    Article  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2

    Article  Google Scholar 

  • Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y, Zhang R (2011) Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mat 185:717–724

    Article  CAS  Google Scholar 

  • Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666

    Article  CAS  PubMed  Google Scholar 

  • Ellman G (1959) Tissue sulphydryl groups. Arch Biochem Biophys 32:70–77

    Article  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth Enzymol 186:407–421

    CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, Hussain J, Sohn EY, Lee IJ (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102:989–995

    Article  CAS  PubMed  Google Scholar 

  • Harrison E, Burbidge A, Okyere J, Thompson A, Taylor I (2011) Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regul 64:301–309

    Article  CAS  Google Scholar 

  • Herde O, Peña-Cortés H, Wasternack C, Willmitzer L, Fisahn J (1999) Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid deficient tomato mutants. Plant Physiol 119:213–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herde O, Peña-Cortés H, Willmitzer L, Fisahn J (1997) Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plant. Plant Cell Eviron 20:136–141

    CAS  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo JA, Garcıa-Garrido JM (2007) Abscisic acid determinates arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–64

    Article  CAS  PubMed  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    Article  CAS  PubMed  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Inter J Plant Product 3:29–34

    Google Scholar 

  • Kamboj JS, Blake PS, Quinlan JD, Baker DA (1999) Identification and quantification by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regu 28:199–205

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ (2011a) Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plantarum 143:329–343

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011b) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid secretion can improve plant growth potential in abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:2–14

    Article  Google Scholar 

  • Koch JR, Creelman RA, Eshita SM, Seskar M, Mullet J, Davis KR (2000) Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol 123:487–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindberg S, Kader MA, Yemelyanov V, Ahmad P (2012) Calcium signaling in plant cells under environmental stress. In: Prasad MNV (ed) Environmental adaptations and atress tolerance of plants in the era of climate change. Springer, New York, pp 325–360

    Chapter  Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Div 54:11–18

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (1999) Endophyte infection enhances the ability of tall fescue to utilize sparingly available phosphorus. J Plant Nutr 22:835–853

    Article  CAS  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. Endophytes. Plant Soil 267:1–12

    Article  CAS  Google Scholar 

  • Massaccesi G, Romero MC, Cazau MC, Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18:817–820

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Cur Opi Plant Bio 8:409–414

    Article  CAS  Google Scholar 

  • Mazid M, Zeba HK, Quddusi S, Khan TA, Mohammad F (2011) Significance of sulphur nutrition against metal induced oxidative stress in plants. J Stress Physiol Biochem 7:165–184

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Monnet F, Vailant N, Vernay P, Coudret A, Sallanon H, Hitmi A (2001) Relationship between PSII activity, CO2 fixation and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J Plant Physiol 158:1137–1144

    Article  CAS  Google Scholar 

  • Nagel OW, Konings H, Lambers H (1994) Growth rate, plant development and water relations of the ABA-deficient mutant sitiens. Physiol Plant 92:102–108

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Ann Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Zambrzycka ABE, Godlewska-Zy1kiewicz B (2012) Phytohormones as regulators of heavy metal bio-sorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823. doi:10.1371/journal.pone.0014823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren G, Chen Y, Zou XK, Zhou YQ (2011) Change in climatic extremes over mainland China based on an integrated extreme climate index. Clim Res 50:113–124

    Article  Google Scholar 

  • Rodriguez JAM, Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Muller J, Garrido JMG (2010) Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents. J Plant Physiol 167:606–613

    Article  CAS  PubMed  Google Scholar 

  • Rüegsegger A, Schmutz D, Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93:1579–1584

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol 155:502–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  CAS  PubMed Central  Google Scholar 

  • Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. doi:10.1007/s00709-010-0197-6

    Google Scholar 

  • Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca Arundinacea and Festuca Pratensis. Int J Phytoremed 12:535–549

    Article  CAS  Google Scholar 

  • Sullivan CY (1971) The techniques for measuring plant drought stress. In: Larson KL, Epstain JD (eds) Drought injury and resistance in crops. Crop Sci Society of America, Madison, WI, pp 1–18

    Google Scholar 

  • Taylor IB, Linforth RST, Al-Naieb RJ, Bowman WR, Marples BA (1988) The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant Cell Environ 11:739–45

    Article  CAS  Google Scholar 

  • Wang L, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2? homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS 102:13386–13391

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Van-derLelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in Plants. Ann Bot 92:487–511

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyper accumulator Solanum nigrum L. Biores Technol 101:1668–1674

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Af J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Zhang D, Duine JA, Kawai F (2002) The extremely high Al resistance of Penicillium janthinellum F-13 is not caused by internal or external sequestration of Al. Biometals 15:167–174

    Article  CAS  PubMed  Google Scholar 

  • Zhu R, Macfie SM, Ding Z (2005) Cadmium-induced plant stress investigated by scanning electrochemical microscopy. J Exp Bot 56:2831–2838a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The present research work was funded by the Eco-Innovation Project, Korean Government's R&D program on Environmental Technology and Development, Republic of Korea. The authors are thankful to anonymous reviewers and Prof. Paolo Nannipieri for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.L., Waqas, M., Hussain, J. et al. Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50, 75–85 (2014). https://doi.org/10.1007/s00374-013-0833-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0833-3

Keywords

Navigation