Skip to main content

Advertisement

Log in

Inoculating maize fields with earthworms (Aporrectodea trapezoides) and an arbuscular mycorrhizal fungus (Rhizophagus intraradices) improves mycorrhizal community structure and increases plant nutrient uptake

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p < 0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin-reactive N in extracts of fumigated soils. Soil Biol Biochem 20:107–114

    Article  CAS  Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357

    Article  PubMed  Google Scholar 

  • Axmann H, Sebastianelli A, Arrillaga JL (1990) Sample preparation techniques of biological material for isotope analysis. In: Hardarson G (ed) Use of nuclear techniques in studies of soil–plant relationship. International Atomic Energy Agency, Vienna, pp 41–53

    Google Scholar 

  • Azcón R, Azcon-Aguilar C, Barea JM (1978) Effect of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80:359–364

    Article  Google Scholar 

  • Bardgett R (2007) The biology of soil—a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Brookes PC, Kragt JF, Powlson DS, Jenkinson DS (1985) Chloroform fumigation and release of soil N: a rapid direct extraction method to measure microbial biomass N in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Calvet C, Pera J, Barea JM (1993) Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviridae and Pythium ultimum in a peat–perlite mixture. Plant Soil 148:1–6

    Article  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms—a review. Pedobiologia 50:463–477

    Article  Google Scholar 

  • Douds DD, Reider C (2003) Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biol Agric Hortic 21:91–102

    Article  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Eisenhauer N, Konig S, Renker ACW (2009) Impacts of earthworms and arbuscular mycorrhizal fungi (Rhizophagus intraradices) on plant performance are not interrelated. Soil Biol Biochem 41:561–567

    Article  CAS  Google Scholar 

  • Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609

    Article  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular–arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7:616–622

    Article  Google Scholar 

  • Gormsen D, Olsson P, Hedlund K (2004) The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol 27:211–220

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16

    Google Scholar 

  • Jones JJ, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. Samples. In: Westerman R (ed) Soil testing and plant analysis, vol. 3. SSSA book series. Soil Science Society of America, Madison, pp 389–427

    Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    Article  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüβler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Ladygina N, Henry F, Kant MR, Koller R, Reidinger S, Rodriguez A, Saj S, Sonnemann S, Witt C, Wurst S (2010) Additive and interactive effects of functionally dissimilar soil organisms on a grassland plant community. Soil Biol Biochem 42:2266–2275

    Article  CAS  Google Scholar 

  • Laossi KR, Ginot A, Noguera DC, Blouin M, Barot S (2010) Earthworm effects on plant growth do not necessarily decrease with soil fertility. Plant Soil 328:109–118

    Article  CAS  Google Scholar 

  • Lawrence B, Fisk MC, Fahey TJ (2003) Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum). New Phytol 157:145–153

    Article  Google Scholar 

  • Lee J, Lee S, Young PW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  PubMed  CAS  Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  PubMed  CAS  Google Scholar 

  • Li H, Li X-L, Dou Z-X, Zhang J-L, Wang C (2012a) Earthworm (Aporrectodea trapezoides)–mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize. Biol Fertil Soils 48:75–85

    Article  Google Scholar 

  • Li H, Xiang D, Wang C, Li XL, Lou Y (2012b) Effects of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal fungus (Glomus intraradices) on enzyme activities of a sterilized soil–sand mixture and nutrient uptake by maize. Biol Fert Soils 48:879–887

    Article  CAS  Google Scholar 

  • Li H, Wang C, Li XL, Christie P, Dou ZX, Zhang JL, Xiang D (2012c) Impact of the earthworm Aporrectodea trapezoides and the arbuscular mycorrhizal fungus Glomus intraradices on 15N uptake by maize from wheat straw. Biol Fertil Soils 49:263–279

    Article  Google Scholar 

  • Liu YL, Zhang B, Li CL, Hu F, Velde B (2008) Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil. Soil Sci Soc Am J 72:1580–1590

    Article  CAS  Google Scholar 

  • Ma Y, Dickinson NM, Wong M-H (2006) Beneficial effect of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    Article  CAS  Google Scholar 

  • McGonigle TP (1988) A numerical analysis of published field trials with vesicular–arbuscular mycorrhizal fungi. Func Ecol 2:473–478

    Article  Google Scholar 

  • McLean MA, Migge-Kleian S, Parkinson D (2006) Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biol Invasions 8:1257–1273

    Article  Google Scholar 

  • Metson AJ (1956) Methods of chemical analysis for soil survey samples. NZ Soil Bureau Bulletin No. 12

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Newman EI (1966) A method of estimating total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G (2011) Advances in Glomeromycota taxonomy and classification. Ima Fungus 2:191–199

    Article  PubMed  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Circular 939:1–8

    Google Scholar 

  • Ortiz-Ceballos AI, Pena-cabriales JJ, Fragoso C (2007) Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch. Biol Fert Soils 44:181–186

    Article  Google Scholar 

  • Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376

    Article  CAS  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, Cafa G, Bonari E, Young PW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant–microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microb 67:495–498

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith FA, Jakobsen SSE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Article  Google Scholar 

  • Sparling GP, Feltham CW, Reynolds J, West AW, Singleton P (1990) Estimation of soil microbial carbon by fumigation–extraction method. Use on soils of high organic matter content, and a reassessment of the k EC-factors. Soil Biol Biochem 22:301–307

    Article  Google Scholar 

  • Svensson K, Friberg H (2007) Changes in active microbial biomass by earthworms and grass amendments in agricultural soil. Biol Fertil Soils 44:223–228

    Article  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy, Madison, WI, pp 903–947

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf- Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:72–75

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Google Scholar 

  • Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET (2012) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109

    Article  Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Article  PubMed  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–264

    Article  CAS  Google Scholar 

  • Wurst S, Dugassa-Gobena D, Langel R, Bonkoski M, Scheu S (2004) Combined effects of earthworms and vesicular–arbuscular mycorrhizas on plant and aphid performance. New Phytol 163:169–173

    Article  Google Scholar 

  • Wurst S, Gebhardt K, Rillig MC (2011) Independent effects of arbuscular mycorrhiza and earthworms on plant diversity and newcomer plant establishment. J Veg Sci 22:1021–1030

    Article  Google Scholar 

  • Yu X, Cheng J, Wong MH (2005) Earthworm–mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201

    Article  CAS  Google Scholar 

  • Zaller JG, Heigl F, Grabmaier A, Lichtenegger C, Piller K, Allabashi R, Frank T, Drapela T (2011a) Earthworm–mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS One 6:e29293

    Article  PubMed  CAS  Google Scholar 

  • Zaller JG, Frank T, Drapela T (2011b) Soil sand content can alter effects of different taxa of mycorrhizal fungi on plant biomass production of grassland species. Europ J Soil Biol 47:175–181

    Article  Google Scholar 

  • Zarea MJ, Ghalavand A, Goltapeh EM (2009) Effects of mixed cropping, earthworms (Pheretima sp), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia 4:223–235

    Article  Google Scholar 

Download references

Acknowledgments

The research was funded by the Special Scientific Fund for Non-profit Public Industry (Chinese Ministry of Agriculture, 201103003), the National Natural Science Foundation of China (Project 31172037), and the Innovative Group Grant of NSFC (31121062). We also acknowledge Dr. BaoDong Chen of the Chinese Academy of Sciences for the laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, C., Li, X. et al. Inoculating maize fields with earthworms (Aporrectodea trapezoides) and an arbuscular mycorrhizal fungus (Rhizophagus intraradices) improves mycorrhizal community structure and increases plant nutrient uptake. Biol Fertil Soils 49, 1167–1178 (2013). https://doi.org/10.1007/s00374-013-0815-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0815-5

Keywords

Navigation