Skip to main content
Log in

Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

High yield culture medium is fundamental for production of inoculants for plant growth-promoting bacteria. Based on substitution of glucose in tryptone–yeast extract–glucose medium by Na-gluconate or glycerol, two new culture media were developed for mass cultivation of the commonly used plant growth-promoting bacterium Azospirillum sp. After 18 h of incubation, these modifications increased populations of different strains of Azospirillum (to ∼1011 cells ml−1 [single cell count] and ∼5 × 109 CFU ml−1 [plate count method]), significantly reduced generation time, and were also suitable for production of common synthetic inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144:69–75

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y (1986) Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098

    PubMed  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262–266

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1985) An improved selection technique and medium for the isolation and enumeration of Azospirillum brasilense. Can J Microbiol 31:947–952

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, Boca Raton, pp 331–345

    Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carrier for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Salazar B, Puente ME, Bacilio M, Linderman RG (2009) Enhanced establishment and growth of giant cardon cactus in an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plant growth-promoting microorganisms and compost. Biol Fertil Soils 45:585–594

    Article  Google Scholar 

  • Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  Google Scholar 

  • Castellanos T, Ascensio F, Bashan Y (1997) Cell-surface hydrophobicity and cell-surface charges of Azospirillum spp. FEMS Microbiol Ecol 24:159–172

    Article  CAS  Google Scholar 

  • Chrzanowski TH, Crotty RD, Hubbard JG, Welch RP (1984) Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb Ecol 10:179–185

    Article  Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    PubMed  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  PubMed  CAS  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44:938–947

    Article  CAS  Google Scholar 

  • Díaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Article  Google Scholar 

  • Döbereiner J, Day JM (1976) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the 1st international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Hartmann A, Bashan Y (2009) Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB)—special issue. Eur J Soil Biol 45:1–2

    Article  Google Scholar 

  • Hartmann A, Zimmer W (1994) Physiology of Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC, Boca Raton, pp 15–39

    Google Scholar 

  • Jain SK, Pathak DV, Sharma HR (2000) Alternate carbon substrate for mass production of Rhizobium inoculants. Haryana Agric Univ J Res 30:1–6

    Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y (2003) Poly-β-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense y characterization of a phaZ mutant. Arch Microbiol 180:309–318

    Article  PubMed  CAS  Google Scholar 

  • Leyva LA, Bashan Y (2008) Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd. Plant Physiol Biochem 46:898–904

    Article  PubMed  CAS  Google Scholar 

  • Madkour MA, Tombas Smith L, Smith GM (1990) Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl Environ Microbiol 56:2876–2881

    PubMed  CAS  Google Scholar 

  • Mukherjee A, Ghosh S (1987) Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense. J Bacteriol 169:4361–4367

    PubMed  CAS  Google Scholar 

  • Nur I, Okon Y, Henis Y (1982) Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture. J Gen Microbiol 128:2937–2943

    CAS  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    PubMed  CAS  Google Scholar 

  • Prabhu SR, Thomas GV, Nierzwicki-Bauer SA, Prasad TG (2000) GA-like substances produced by endophytic Gram-positive bacteria are associated with coconut palm (Cocos nucifera). In: Rajagopal V, Naresh Kumar S, Upadhyay A, Niral V (eds) National Seminar on Recent Advances in Plant Biology, Central Plantation Crops Research Institute, Kasaragod, India, pp 141–142

  • Prasad K, Kadokawa JI (2009) Alginate-based blends and nano/microbeads. Microbiol Monographs 13:175–210

    Article  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: a review. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  • Robergs RA, Griffin SE (1998) Glycerol: biochemistry, pharmacokinetics and clinical and practical applications. Sports Med 26:145–167

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Caceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum–Skermanella–Rhodocista-cluster. Syst Appl Microbiol 24:83–97

    Article  PubMed  CAS  Google Scholar 

  • Umali-Garcia M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39:219–226

    PubMed  CAS  Google Scholar 

  • Westby CA, Cutshall DS, Vigil G (1983) Metabolism of various carbon sources by Azospirillum brasilense. J Bacteriol 156:1369–1372

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Secretaria de Medio Ambiente y Recursos Naturales of Mexico (SEMARNAT contract 23510) and the time for writing by The Bashan Foundation, USA. Ira Fogel of CIBNOR provided useful editorial comments. A.T. is a recipient of a fellowship from the graduate school at CIBNOR, with additional funding from the Bashan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoav Bashan.

Additional information

This study is dedicated to the memory of Dr. Jesus Caballero-Mellado (1953–2010) of Centro de Ciencias Genómicas de la UNAM, the pioneer of Azospirillum research in Mexico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashan, Y., Trejo, A. & de-Bashan, L.E. Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soils 47, 963–969 (2011). https://doi.org/10.1007/s00374-011-0555-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0555-3

Keywords

Navigation