Skip to main content
Log in

Phosphate solubilization potentials of soil Acinetobacter strains

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Many phosphate solubilizing microorganisms (PSM) require external pyrroloquinoline quinone (PQQ) for strong phosphorus (P) solubilization in vitro. The objective of this study was to isolate efficient and PQQ-independent PSM. A total of 21 PSM were isolated from the rhizosphere soil of wheat and maize grown in the pots. Acinetobacter strains were the only PQQ-independent and most effective solubilizers of tricalcium phosphate containing agar. The mean P dissolved in liquid cultures of Acinetobacter strains in a 5-day incubation ranged from 167 to 888 μg/ml P. The pH dropped to below 4.7 from 7.8 in six isolates, which produced gluconic acid in concentrations ranging between 27.5 and 37.5 mM. There was a linear regression between soluble P and gluconic acid concentrations in the bacterial cultures (P < 0.05; R 2 = 0.59). Inoculation with Acinetobacter sp. WR922 significantly (P < 0.05) increased wheat (Triticum aestivum L.) P content by 27% at 15 days after emergence (DAE) and dry matter by 15% at 30 DAE compared to the control. The plant P content in inoculated plants at 30 DAE was linearly correlated with soluble P of the bacterial cultures (P < 0.05; R 2 = 0.69). Gluconic acid production directly affected phosphate solubilization in vitro, which in turn influenced plant P content of inoculated plants in PQQ-independent P-solubilizing Acinetobacter strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamowicz M, Conway T, Nickerson KW (1991) Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner–Doudoroff pathway. Appl Environ Microbiol 57:2012–2015

    CAS  PubMed  Google Scholar 

  • Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978

    CAS  PubMed  Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host plant specificity in the infection of cereals with Azospirilum spp. Appl Environ Microbiol 12:433–439

    Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Baumann P (1968) Isolation of Acinetobacter from soil and water. J Bacteriol 96:39–42

    Article  CAS  PubMed  Google Scholar 

  • Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 12:1615–1618

    Article  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Day PR (1965) Particle fractionation and particle-size analysis. In: Black CA (ed) Methods of soil analysis, part I. American Society of Agronomy, Madison, WI, pp 547–565

    Google Scholar 

  • de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    Article  CAS  PubMed  Google Scholar 

  • Fliege R, Tong S, Shibata A, Nickerson KW, Conway T (1992) The Entner–Doudoroff pathway in Escherichia coli is induced for oxidative glucose metabolism via pyrroloquinoline quinine-dependent glucose dehydrogenase. Appl Environ Microbiol 58:3826–3829

    CAS  PubMed  Google Scholar 

  • Gaind S, Gaur AC (2002) Impact of fly ash and phosphate solubilizing bacteria on soybean productivity. Bioresour Technol 85:313–315

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Separating phosphate from ores via bioprocessing. Nat Biotechnol 11:1250–1254

    CAS  Google Scholar 

  • Goosen N, Horsman HP, Huinen RG, van de Putte P (1989) Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol 171:447–455

    CAS  PubMed  Google Scholar 

  • Guinazu LB, Andres JA, MF Del papa, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190

    Article  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA, Kumar GN (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Hommes RWJ, Postma PW, Neijssel OM, Tempest DW, Dokter P, Duine JA (1984) Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli. FEMS Microbiol Lett 24:329–333

    Article  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    CAS  Google Scholar 

  • Krishnaraj PU, Goldstein AH (2001) Cloning of Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205:215–220

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28:301–305

    Article  CAS  Google Scholar 

  • Lin T, Huang H, Shen F, Young C (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour Technol 97:957–960

    Article  CAS  PubMed  Google Scholar 

  • Lindsey WL, Norwell WA (1978) Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  Google Scholar 

  • Liu S, Lee L, Tai C, Hung C, Chang Y, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in E. coli HB101: nucleotide sequence and probable involvement in biosynthesis of the co-enzyme pyrroloquinnoline quinone. J Bacteriol 174:5814–5819

    CAS  PubMed  Google Scholar 

  • Narula N, Kumar V, Behl RK, Deubel A, Gransee A, Merbach W (2000) Effect of P- solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. J Plant Nutr Soil Sci 163:393–398

    Article  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  PubMed  Google Scholar 

  • Nelson RE (1982) Carbonate and gypsum. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part II: chemical and microbiological properties. SSSA Inc., Madison, WI, pp 181–196

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part II: chemical and microbiological properties. SSSA Inc., Madison, WI, pp 539–577

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part II: chemical and microbiological properties. SSSA Inc., Madison, WI, pp 403–430

    Google Scholar 

  • Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem 33:1927–1935

    Article  CAS  Google Scholar 

  • Perez E, Sulbaran M, Ball MM, Yarzabal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Tanguay P, Antoun H (1999) Characteristics of phosphate solubilization by an isolate of tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:291–295

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzales T, Bashan Y (2006) Genetics of phosphate solubilization and its applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Son H, Park G, Cha M, Heo M (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FJ (1986) Cycles of carbon, nitrogen, phosphorus, sulphur, and micronutrients. Wiley, New York

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1993) Soil fertility and fertilizers. Macmillian Publishing Co, New York

    Google Scholar 

  • Towner K (2006) The genus Acinetobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The Procaryotes, a handbook on the biology of the bacteria: Proteobacteria, gamma subclass, Volume 6. Springer Science+Business Media, LLC, New York, NY, pp 746–758

    Google Scholar 

  • van Kleef MAG, Duine JA (1989) Factors relevant in bacterial pyrroloquinoline quinine production. Appl Environ Microbiol 55:1209–1213

    PubMed  Google Scholar 

  • van Schie BJ, van Dijken JP, Kuenen JG (1984) Non-coordinated synthesis of glucose dehydrogenase and its prosthetic group PQQ in Acinetobacter and Pseudomonas species. FEMS Microbiol Lett 24:133–138

    Article  Google Scholar 

  • Vasquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the funding of this project by the Gaziosmanpaşa and Selçuk Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Ogut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogut, M., Er, F. & Kandemir, N. Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46, 707–715 (2010). https://doi.org/10.1007/s00374-010-0475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0475-7

Keywords

Navigation