Skip to main content
Log in

Adaptive tri-plateau limit tri-histogram equalization algorithm for digital image enhancement

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Histogram equalization (HE) is one of the most important techniques for contrast enhancement of digital images. Conventional HE methods persuade excessive enhancement, unnatural artifacts and brightness transform resulting abnormal and unusual appearance. To solve such problems, a novel tri-plateau limit-oriented tri-histogram equalization technique is suggested for digital image enhancement, where histogram of the input image is initially separated in three sub-histograms using separation threshold parameters. Next, plateau limit criteria for sub-histograms are formulated using the average of the mean and the median of each sub-histogram, and subsequently, a redistributed parameter is calculated and merged with each sub-histogram to restrict over-enhancement. Finally, modified sub-histograms are equalized separately and the enhanced image is produced by incorporating the images accomplished by the transformation function. Experimental results demonstrate that the proposed technique efficiently enhances the contrast of images, while visual quality assessments and quantitative measures, like average information content (AIC), feature similarity index measure (FSIM), multi scale structural similarity index measure (MS-SSIM), visual saliency-induced index (VSI), and gradient magnitude similarity deviation (GMSD) effectively validate the superiority of the proposed algorithm with respect to the other traditional state-of-the-art HE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Loh, Y.P., Liang, X., Chan, C.S.: Low-light image enhancement using Gaussian Process for features retrieval. Signal Process. Image Commun. 74, 175–190 (2019)

    Article  Google Scholar 

  2. Chang, S., Cai, X., Flueraru, C.: Image enhancement for multilayer information retrieval by using full-field optical coherence tomography. Appl. Opt. 45(23), 5967–5975 (2006)

    Article  Google Scholar 

  3. Iqbal, K., Odetayo, M., James, A., Iqbal, R., Kumar, N., Barma, S.: An efficient image retrieval scheme for colour enhancement of embedded and distributed surveillance images. Neurocomputing 174, 413–430 (2016)

    Article  Google Scholar 

  4. Jin, C., Luan, N.: An image denoising iterative approach based on total variation and weighting function. Multimed. Tools Appl. 79(29), 20947–20971 (2020)

    Article  Google Scholar 

  5. Zhang, S., He, F., Ren, W., Yao, J.: Joint learning of image detail and transmission map for single image dehazing. The Vis. Comput. 36(2), 305–316 (2020)

    Article  Google Scholar 

  6. Raikwar, S.C., Tapaswi, S.: Tight lower bound on transmission for single image dehazing. The Vis. Comput. 36(1), 191–209 (2020)

    Article  MATH  Google Scholar 

  7. Chen, Z., Hu, Z., Sheng, B., Li, P., Kim, J., Wu, E.: Simplified non-locally dense network for single-image dehazing. The Vis. Comput. 36(10), 2189–2200 (2020)

    Article  Google Scholar 

  8. Moriyama, D., Azetsu, T., Ueda, C., Suetake, N., Uchino, E.: Image enhancement with lightness correction and image sharpening based on characteristics of vision for elderly persons. Opt. Rev. 27, 352–360 (2020)

    Article  Google Scholar 

  9. Dawood, H., Dawood, H., Ping, G., Mehmood, R., Daud, A., Alamri, A., et al.: Probability weighted moments regularization based blind image De-blurring. Multimed. Tools Appl. 79(7), 4483–4498 (2020)

    Article  Google Scholar 

  10. Das, B., Ebenezer, J.P., Mukhopadhyay, S.: A comparative study of single image fog removal methods. The Visual Computer. 1–17,(2020)

  11. Anwar, S., Rajamohan, G.: Improved image enhancement algorithms based on the switching median filtering technique. Arab. J. Sci. Eng. 45(12), 11103–11114 (2020)

    Article  Google Scholar 

  12. Cao, L., Li, H.: Enhancement of blurry retinal image based on non-uniform contrast stretching and intensity transfer. Med. Biol. Eng. Comput. 58(3), 483–496 (2020)

    Article  Google Scholar 

  13. Zhang, L., Yan, Q., Zhu, Y., Zhang, X., Xiao, C.: Effective shadow removal via multi-scale image decomposition. The Vis. Comput. 35(6), 1091–1104 (2019)

    Article  Google Scholar 

  14. Tang, Y., Sun, J., Jiang, A., Chen, Y., Zhou, L.: Adaptive graph filtering with intra-patch pixel smoothing for image denoising. Circuit. Syst. Sig. Process. 1–20 (2021)

  15. Chen, L., Fu, G.: Structure-preserving image smoothing with semantic cues. The Vis. Comput. 36(10), 2017–2027 (2020)

    Article  Google Scholar 

  16. Gonzalez, R.C., Woods, R.E., et al.: Digital image processing. Prentice hall Upper Saddle River, NJ (2002)

    Google Scholar 

  17. Gandhi, C. R., Murugesh, V.: A contrast adaptive histogram equalization with neural learning quantization (CAHE-NLQ) for blood clot detection in brain. J. Ambient Intell. Human. Comput. 1–15 (2021)

  18. Sirajuddeen, C., Kansal, S., Tripathi, R.K.: Adaptive histogram equalization based on modified probability density function and expected value of image intensity. Sig. Image Video Process. 14(1), 9–17 (2020)

    Article  Google Scholar 

  19. Joshi, P., Prakash, S.: Image enhancement with naturalness preservation. The Vis. Comput. 36(1), 71–83 (2020)

    Article  Google Scholar 

  20. Bulut, F.: Low dynamic range histogram equalization (LDR-HE) via quantized Haar wavelet transform. The Vis. Comput. 1–17 (2021)

  21. Ulutas, G., Ustubioglu, B.: Underwater image enhancement using contrast limited adaptive histogram equalization and layered difference representation. Multimed. Tools Appl. 1–25 (2021)

  22. Paul, A., Sutradhar, T., Bhattacharya, P., Maity, S.P.: Adaptive clip-limit-based bi-histogram equalization algorithm for infrared image enhancement. Appl. Opt. 59(28), 9032–9041 (2020)

    Article  Google Scholar 

  23. Paul, A., Sutradhar, T., Bhattacharya, P., Maity, S.P.: Infrared images enhancement using fuzzy dissimilarity histogram equalization. Optik. 167887 (2021)

  24. Simi, V., Edla, D.R., Joseph, J., Kuppili, V.: Parameter-free fuzzy histogram equalisation with illumination preserving characteristics dedicated for contrast enhancement of magnetic resonance images. Appl. Soft Comput. 93, 106364 (2020)

    Article  Google Scholar 

  25. Siddiqi, A.A., Narejo, G.B., Tariq, M., Hashmi, A.: Investigation of histogram equalization filter for CT scan image enhancement. Biomed. Eng. Appl. Basis Commun. 31(05), 1950038 (2019)

    Article  Google Scholar 

  26. Sidar, I., Davidson, T., Kronman, A., Lior,. M., Levy, I.: Endoscopic image enhancement using contrast limited adaptive histogram equalization (clahe) implemented in a processor. Google Patents. US Patent App. 16/685,299 (2020)

  27. Rong, Z., Li, Z., Dong-nan, L.: Study of color heritage image enhancement algorithms based on histogram equalization. Optik 126(24), 5665–5667 (2015)

    Article  Google Scholar 

  28. Singh, H., Kumar, A., Balyan, L., Lee, H.: Optimally sectioned and successively reconstructed histogram sub-equalization based gamma correction for satellite image enhancement. Multimed. Tools Appl. 78(14), 20431–20463 (2019)

    Article  Google Scholar 

  29. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Cons. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  30. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Cons. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  31. Chen, S.D., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Cons. Electron. 49(4), 1310–1319 (2003)

    Article  Google Scholar 

  32. Chen, S.D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Cons. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  33. Sim, K., Tso, C., Tan, Y.: Recursive sub-image histogram equalization applied to gray scale images. Pattern Recog. Lett. 28(10), 1209–1221 (2007)

    Article  Google Scholar 

  34. Ooi, C.H., Kong, N.S.P., Ibrahim, H.: Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Cons. Electron. 55(4), 2072–2080 (2009)

    Article  Google Scholar 

  35. Ooi, C.H., Isa, N.A.M.: Adaptive contrast enhancement methods with brightness preserving. IEEE Trans. Cons. Electron. 56(4), 2543–2551 (2010)

    Article  Google Scholar 

  36. Aquino-Morínigo, P.B., Lugo-Solís, F.R., Pinto-Roa, D.P., Ayala, H.L., Noguera, J.L.V.: Bi-histogram equalization using two plateau limits. Sig. Image Video Process. 11(5), 857–864 (2017)

    Article  Google Scholar 

  37. Kandhway, P., Bhandari, A.K.: Modified clipping based image enhancement scheme using difference of histogram bins. IET Image Process. 13(10), 1658–1670 (2019)

    Article  Google Scholar 

  38. Huang, Z., Wang, Z., Zhang, J., Li, Q., Shi, Y.: Image enhancement with the preservation of brightness and structures by employing contrast limited dynamic quadri-histogram equalization. Optik 226, 165877 (2021)

    Article  Google Scholar 

  39. Pineda, I.A.B., Caballero, R.D.M., Silva, J.J.C., Román, J.C.M., Noguera, J.L.V.: Quadri-histogram equalization using cutoff limits based on the size of each histogram with preservation of average brightness. Sig. Image Video Process. 13(5), 843–851 (2019)

    Article  Google Scholar 

  40. Caballero, R.D.M., Pineda, I.A.B., Román, J.C.M., Noguera, J.L.V., Silva, J.J.C.: Quadri-Histogram Equalization for infrared images using cut-off limits based on the size of each histogram. Infrared Phys. Technol. 99, 257–264 (2019)

    Article  Google Scholar 

  41. Qadar, M.A., Zhaowen, Y., Rehman, A., Alvi, M.A.: Recursive weighted multi-plateau histogram equalization for image enhancement. Optik 126(24), 5890–5898 (2015)

    Article  Google Scholar 

  42. Lin, P.H., Lin, C.C., Yen, H.C., Tri-histogram equalization based on first order statistics. In: IEEE 13th International Symposium on Consumer Electronics. IEEE 2009, 387–391 (2009)

  43. Paul, A., Bhattacharya, P., Maity, S.P., Bhattacharyya, B.K.: Plateau limit-based tri-histogram equalisation for image enhancement. IET Image Process. 12(9), 1617–1625 (2018)

    Article  Google Scholar 

  44. Zarie, M., Hajghassem, H., Majd, A.E.: Contrast enhancement using triple dynamic clipped histogram equalization based on mean or median. Optik 175, 126–137 (2018)

    Article  Google Scholar 

  45. Zarie, M., Pourmohammad, A., Hajghassem, H.: Image contrast enhancement using triple clipped dynamic histogram equalisation based on standard deviation. IET Image Process. 13(7), 1081–1089 (2019)

    Article  Google Scholar 

  46. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2, 1398–1402 (2003)

  49. Zhang, L., Shen, Y., Li, H.: VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Signal and Image Processing Institute of USC University of Southern California. The USC-SIPI image database;. Accessed January 4, 2020. [On-line]. Available: http://sipi.usc.edu/database/database.php

  52. Franzen, R.: Kodak lossless true color image suite. Accessed January 4, 2020. [On-line]. Available: http://r0k.us/graphics/kodak/

  53. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imag. 19(1), 011006 (2010)

    Article  Google Scholar 

  54. The Berkeley Segmentation Dataset and Benchmark;. Accessed January 4, 2020. [On-line]. Available: https://www2.eecs.berkeley.edu/Research/Projects/CS/ vision/bsds/

  55. Liu, X.: Total generalized variation and wavelet frame-based adaptive image restoration algorithm. The Vis. Comput. 35(12), 1883–1894 (2019)

    Article  Google Scholar 

  56. Bhandari, A.K.: A logarithmic law based histogram modification scheme for naturalness image contrast enhancement. J. Ambient Intell. Human. Comput. 11(4), 1605–1627 (2020)

    Article  MathSciNet  Google Scholar 

  57. Yuan, Q., Li, J., Zhang, L., Wu, Z., Liu, G.: Blind motion deblurring with cycle generative adversarial networks. The Vis. Comput. 36(8), 1591–1601 (2020)

    Article  Google Scholar 

  58. Srinivas, K., Bhandari, A.K., Singh, A.: Exposure-based energy curve equalization for enhancement of contrast distorted images. IEEE Trans. Circuit Syst. Video Technol. 30(12), 4663–4675 (2019)

    Article  Google Scholar 

  59. Acharya, U.K., Kumar, S.: Particle swarm optimized texture based histogram equalization (PSOTHE) for MRI brain image enhancement. Optik 224, 165760 (2020)

    Article  Google Scholar 

  60. Gao, G., Lai, H., Liu, Y., Wang, L., Jia, Z.: Sandstorm image enhancement based on YUV space. Optik 226, 165659 (2021)

    Article  Google Scholar 

  61. Zhang, S., Wang, T., Dong, J., Yu, H.: Underwater image enhancement via extended multi-scale Retinex. Neurocomputing 245, 1–9 (2017)

    Article  Google Scholar 

  62. Wang, P., Wang, Z., Lv, D., Zhang, C., Wang, Y.: Low illumination color image enhancement based on Gabor filtering and Retinex theory. Multimed. Tools Appl. 80(12), 17705–17719 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A. Adaptive tri-plateau limit tri-histogram equalization algorithm for digital image enhancement. Vis Comput 39, 297–318 (2023). https://doi.org/10.1007/s00371-021-02330-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02330-z

Keywords

Navigation