Skip to main content
Log in

A practical methodology for computer-aided design of custom 3D printable casts for wrist fractures

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In recent years, breakthroughs in the fields of reverse engineering and additive manufacturing techniques have led to the development of innovative solutions for personalized medicine. 3D technologies are quickly becoming a new treatment concept that hinges on the ability to shape patient-specific devices. Among the wide spectrum of medical applications, the orthopaedic sector is experiencing the most benefits. Several studies proposed modelling procedures for patient-specific 3D-printed casts for wrist orthoses, for example. Unfortunately, the proposed approaches are not ready to be used directly in clinical practice since the design of these devices requires significant interaction among medical staff, reverse engineering experts, additive manufacturing specialists and CAD designers. This paper proposes a new practical methodology to produce 3D printable casts for wrist immobilization with the aim of overcoming these drawbacks. In particular, the idea is to realize an exhaustive system that can be used within a paediatric environment. It should provide both a fast and accurate dedicated scanning of the hand-wrist-arm district, along with a series of easy-to-use semi-automatic tools for the modelling of the medical device. The system was designed to be used directly by the clinical staff after a brief training. It was tested on a set of five case studies with the aim of proving its general reliability and identifying possible major flaws. Casts obtained using the proposed system were manufactured using a commercial 3D printer, and the device’s compliance with medical requirements was tested. Results showed that the designed casts were correctly generated by the medical staff without the need of involving engineers. Moreover, positive feedback was provided by the users involved in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mulford, J.S., Babazadeh, S., Mackay, N.: Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J. Surg. 86, 648–653 (2016). https://doi.org/10.1111/ans.13533

    Article  Google Scholar 

  2. Eltorai, A.E.M., Nguyen, E., Daniels, A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics 38, 684–687 (2015). https://doi.org/10.3928/01477447-20151016-05

    Article  Google Scholar 

  3. Boyd, A.S., Benjamin, H.J., Asplund, C.: Principles of casting and splinting. Am. Fam. Physician 79, 16–22 (2009)

    Google Scholar 

  4. Chudnofsky, C.R., Byers, S.E.: Splinting techniques. In: Roberts, J.R., Hedges, J.R., Chanmugam, A.S. (eds.) Clinical Procedures in Emergency Medicine E-Book, 4th edn. Elsevier Health Sciences, Amsterdam (2004)

    Google Scholar 

  5. Professional 3D Scanners|Artec 3D|Best 3D Scanning Solutions: https://www.artec3d.com/?keyword=%2Bartec%2B3d&gclid = Cj0KCQjwibDXBRCyARIsAFHp4fo_uuYVzw3wpPCxNA1PCuX2nBPt4aIsuqIMGmg63I-RxwsD_KUCLjUaAsdrEALw_wcB (n.d.). Accessed 4 May 2018

  6. Structure Sensor Press Info. Structure: https://structure.io/press#press-photos (n.d.). Accessed 4 May 2018

  7. Holey, realizzazione di tutori ortopedici per i vostri pazienti: https://holey.it/ (n.d.). Accessed 4 May 2018

  8. Evill J.: Cortex–Evill 2013. http://www.evilldesign.com/cortex. Accessed 4 May 2018

  9. Osteoid: http://www.osteoid.com/ (n.d.). Accessed 4 May 2018

  10. Lin, H., Shi. L., Wang. D.: A rapid and intelligent designing technique for patient-specific and 3D-printed orthopedic cast. 3D Print Med. 2:4 (2015). https://doi.org/10.1186/s41205-016-0007-7

  11. Kim, H., Jeong, S.: Case study: hybrid model for the customized wrist orthosis using 3D printing. J. Mech. Sci. Technol. 29, 5151–5156 (2015). https://doi.org/10.1007/s12206-015-1115-9

    Article  Google Scholar 

  12. Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P., Navrat, T.: Pilot study of the wrist orthosis design process. Rapid Prototyp. J. 20, 27–32 (2014). https://doi.org/10.1108/RPJ-03-2012-0027

    Article  Google Scholar 

  13. Chen, Y.-J., Lin, H., Zhang, X., Huang, W., Shi, L., Wang, D.: Application of 3D–printed and patient-specific cast for the treatment of distal radius fractures: initial experience. 3D Print Med 3:11 (2017). https://doi.org/10.1186/s41205-017-0019-y

  14. Intel® RealSenseTM Technology: http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html (2015). Accessed 4 May 2018

  15. Carfagni, M., Furferi, R., Governi, L., Servi, M., Uccheddu, F., Volpe, Y., et al.: Fast and low cost acquisition and reconstruction system for human hand-wrist-arm anatomy. Proced. Manuf. 11, 1600–1608 (2017). https://doi.org/10.1016/J.PROMFG.2017.07.306

    Article  Google Scholar 

  16. Carfagni, M., Furferi, R., Governi, L., Servi, M., Uccheddu, F., Volpe, Y.: On the performance of the intel SR300 depth camera: metrological and critical characterization. IEEE Sens. J. 17, 4508–4519 (2017). https://doi.org/10.1109/JSEN.2017.2703829

    Article  Google Scholar 

  17. Gordon C.: Anthropometric data 2006:50. http://www.theergonomicscenter.com/graphics/WorkstationDesign/Tables.pdf. Accessed 4 May 2018

  18. Zanuttigh, P., Marin, G., Dal Mutto, C., Dominio, F., Minto, L., Cortelazzo, G.M.: Operating Principles of Structured Light Depth Cameras. Time-of-Flight Struct. Light Depth Cameras, pp. 43–79. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-30973-6_2

    Google Scholar 

  19. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47, 2280–2292 (2014). https://doi.org/10.1016/J.PATCOG.2014.01.005

    Article  Google Scholar 

  20. Schmidt, B., Wang, L.: Automatic work objects calibration via a global–local camera system. Robot Comput. Integr. Manuf. 30, 678–683 (2014). https://doi.org/10.1016/J.RCIM.2013.11.004

    Article  Google Scholar 

  21. Crivellaro, A., Rad, M., Verdie, Y., Yi, K.M., Fua, P., Novel, Lepetit V.A.: Representation of parts for accurate 3D object detection and tracking in monocular images. IEEE Int. Conf. Comput. Vis. 2015, 4391–4399 (2015). https://doi.org/10.1109/ICCV.2015.499

    Article  Google Scholar 

  22. López-Fernández, D., Madrid-Cuevas, F.J., Carmona-Poyato, A., Muñoz-Salinas, R., Medina-Carnicer, R.: A new approach for multi-view gait recognition on unconstrained paths. J. Vis. Commun. Image Represent. 38, 396–406 (2016). https://doi.org/10.1016/J.JVCIR.2016.03.020

    Article  Google Scholar 

  23. Dhall, A., Chelani, K., Radhakrishnan, V., Krishna, K.M.: LiDAR-Camera Calibration using 3D-3D Point correspondences (2017)

  24. Munoz-Salinas, R.: ARUCO: a minimal library for Augmented Reality applications based on OpenCv (2012)

  25. Guo, H., Zhu, D., Mordohai, P.: Correspondence estimation for non-rigid point clouds with automatic part discovery. Vis. Comput. 32(12), 1511–1524 (2016)

    Article  Google Scholar 

  26. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Gr. 9, 3–15 (2003). https://doi.org/10.1109/TVCG.2003.1175093

    Article  Google Scholar 

  27. Schroeder, W., Martin, K., Lorensen, B., Kitware, I.: The visualization toolkit : an object-oriented approach to 3D graphics. Kitware (2006)

  28. Rusu, R.B., Cousins, S.: 3D is here: point Cloud Library (PCL). IEEE Int. Conf. Robot. Autom. 2011, 1–4 (2011). https://doi.org/10.1109/ICRA.2011.5980567

    Article  Google Scholar 

  29. Park, S., Guo, X., Shin, H., Qin, H.: Surface completion for shape and appearance. Vis. Comput. 22(3), 168–180 (2006)

    Article  Google Scholar 

  30. Qt Company. Qt for developers by developers|Cross-platform development. https://www.qt.io/developers/ (2016). Accessed 4 May 2018

  31. Siemens Product Lifecycle Management Software Inc. Siemens NX 1973. https://www.plm.automation.siemens.com/en/products/nx/ (2018). Accessed 4 May 2018

  32. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Class. Cartogr. pp. 15–28. Wiley, Wiley, Chichester. https://doi.org/10.1002/9780470669488.ch2

    Chapter  Google Scholar 

  33. Siemens Documentation: Overview of Programmer’s Guide. https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_api#uid:index_nxopen_prog_guide:id1142156:purpose (n.d). Accessed 4 May 2018

  34. Morhart, M., Tredget, E.E., Jarman, A.T.A., Ghahary, A.: Wrist fractures and dislocations: Background, epidemiology, Etiology. http://emedicine.medscape.com/article/1285825-overview#a5 (n.d.). Accessed 4 May 2018

  35. Davidson, S.: Grasshopper (algorithmic modeling for Rhino). http://www.grasshopper3d.com/ (2015). Accessed 4 May 2018

  36. McNeel, R.: Grasshopper–algorithmic modeling for Rhino 2010. http://www.grasshopper3d.com/. Accessed 4 May 2018

  37. Brackett, D., Ashcroft, I., Hague, R.: Topology Optimization for Additive Manufacturing, pp. 348–362. University of Texas, Austin (2011)

    Google Scholar 

  38. Powerful and Easy-to-use FEA and Optimization for Design Engineers|solidThinking Inspire 2018 (n.d.). https://solidthinking.com/inspire2018.html. Accessed 4 May 2018

  39. Ata STR. ABS-M30, THE 3D PRINTING SOLUTIONS COMPANY. http://global72.stratasys.com/~/media/Main/Files/Material_Spec_Sheets/MSS_FDM_ABSM30_0517a_Web.pdf (n.d). Accessed 4 May 2018

  40. F123 Series Printers|Stratasys http://www.stratasys.com/3d-printers/f123 (n.d.). Accessed 4 May 2018

  41. Zhong, Y.: Key techniques for 3D garment design. Comput. Technol. Text. Appar., Elsevier; pp. 69–92. https://doi.org/10.1533/9780857093608.2.69 (2011)

    Chapter  Google Scholar 

  42. Joneja, A., Tam, A., Jing, F.: Draping 2D patterns onto 3D surfaces. Proc. ASME Des. Eng. Tech. Conf. 3, 363 (2003)

    Google Scholar 

  43. Mesuda, Y., Inui, S., Horiba, Y.: Virtual draping by mapping. Comput. Ind. 95, 93–101 (2018). https://doi.org/10.1016/J.COMPIND.2017.11.004

    Article  Google Scholar 

  44. Zhang, X., Fang, G., Dai, C., Verlinden, J., Wu, J., Whiting, E., Wang, C.C.: Thermal-comfort design of personalized casts. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 243–254. ACM (2017)

Download references

Acknowledgements

The authors wish to acknowledge the valuable contribution of Gianmaria Viciconte in providing useful hints for processing 3D data. The authors also wish to thank the Fondazione Ospedale Pediatrico Meyer Onlus (http://www.fondazionemeyer.it/) for funding the T3DDY lab (Personalized paediatrics by inTegrating 3D aDvanced technologY), which originated and made possible this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yary Volpe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buonamici, F., Furferi, R., Governi, L. et al. A practical methodology for computer-aided design of custom 3D printable casts for wrist fractures. Vis Comput 36, 375–390 (2020). https://doi.org/10.1007/s00371-018-01624-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-01624-z

Keywords

Navigation