Skip to main content
Log in

Intermediate shadow maps for interactive many-light rendering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an efficient method for computing shadows for many light sources (e.g., 1024). Our work is based on the observation that conventional shadow mapping becomes redundant as the number of lights increases. First, we sample the scene with a constant number of depth images (e.g., 10), which we call intermediate shadow maps. Then the shadow map for each light is approximated by rendering triangles reconstructed from the intermediate shadow maps. The cost of rendering these triangles is much smaller than rendering the original geometry of a complex scene. The algorithm supports fully dynamic scenes. Our results show that our method can produce soft shadows comparable to those obtained by conventional shadow mapping for each light source or by ray tracing, but at a higher frame rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 3ds max. http://www.autodesk.com/products/3ds-max/overview (2016)

  2. Simplygon. https://www.simplygon.com/ (2016)

  3. Akerlund, O., Unger, M., Wang, R.: Precomputed visibility cuts for interactive relighting with dynamic brdfs. In: Conference on Computer Graphics and Applications, pp. 161–170 (2007)

  4. Cheslack-Postava, E., Wang, R., Akerlund, O., Pellacini, F.: Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. 27(5), 32–39 (2008)

    Article  Google Scholar 

  5. Dachsbacher, C., Křivánek, J., Hašan, M., Arbree, A., Walter, B., Novák, J.: Scalable realistic rendering with many-light methods. In: Sbert, M., Szirmay-Kalos, L. (eds.) Computer Graphics Forum, vol. 33, pp. 88–104. Wiley Online Library (2014)

  6. Davidovič, T., Křivánek, J., Hašan, M., Slusallek, P., Bala, K.: Combining global and local virtual lights for detailed glossy illumination. ACM Trans. Graph. 29(6), 143:1–143:8 (2010). https://doi.org/10.1145/1882261.1866169

  7. Dong, Z., Grosch, T., Ritschel, T., Kautz, J., Seidel, H.P.: Real-time indirect illumination with clustered visibility. In: Proceedings of the Vision, Modeling, and Visualization Workshop 2009, November 16–18, 2009, Braunschweig, Germany, pp. 187–196 (2009)

  8. Feris, R., Raskar, R., Tan, K.H., Turk, M.: Specular reflection reduction with multi-flash imaging. In: Proceedings of the Computer Graphics and Image Processing, XVII Brazilian Symposium, SIBGRAPI ’04, pp. 316–321, Washington, DC, IEEE Computer Society (2004)

  9. Hašan, M., Pellacini, F., Bala, K.: Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26(3), 26 (2007). https://doi.org/10.1145/1276377.1276410

  10. Holländer, M., Ritschel, T., Eisemann, E., Boubekeur, T.: ManyLoDs: parallel many-view level-of-detail selection for real-time global illumination. Comput. Graph. Forum 30(4), 1233–1240 (2011). https://doi.org/10.1111/j.1467-8659.2011.01982.x

  11. Huo, Y., Wang, R., Jin, S., Liu, X., Bao, H.: A matrix sampling-and-recovery approach for many-lights rendering. ACM Trans. Graph. (TOG) 34(6), 210 (2015)

    Article  Google Scholar 

  12. Kristensen, A.W., Akenine-Möller, T., Jensen, H.W.: Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24(3), 1208–1215 (2005)

    Article  Google Scholar 

  13. Nichols, G., Penmatsa, R., Wyman, C.: Interactive, multiresolution image-space rendering for dynamic area lighting. In: Lawrence, J., Stamminger, M. (eds.) Computer Graphics Forum, vol. 29, pp. 1279–1288. Wiley Online Library (2010)

  14. Oliveira, M.M., Bishop, G., McAllister, D.: Relief texture mapping. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 359–368. ACM Press, New York (2000)

  15. Olsson, O., Billeter, M., Sintorn, E., Kampe, V., Assarsson, U.: More efficient virtual shadow maps for many lights . IEEE Trans. Vis. Comput. Graph. 21(6), 701–713 (2015). https://doi.org/10.1109/TVCG.2015.2418772

  16. Olsson, O., Sintorn, E., Kämpe, V., Billeter, M., Assarsson, U.: Efficient virtual shadow maps for many lights. In: Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 87–96. ACM (2014)

  17. Paquette, E., Poulin, P., Drettakis, G.: A light hierarchy for fast rendering of scenes with many lights. In: Ferreira, N., Göbel, M. (eds.) Computer Graphics Forum, vol. 17, pp. 63–74. Wiley Online Library (1998)

  18. Popescu, V., Eyles, J., Lastra, A., Steinhurst, J., England, N., Nyland, L.: The warpengine: an architecture for the post-polygonal age. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, New Orleans, 23–28 July 2000, pp. 433–442 (2000)

  19. Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.P., Kautz, J., Dachsbacher, C.: Micro-rendering for scalable, parallel final gathering. ACM Trans. Graph. 28(5), 89–97 (2009)

    Google Scholar 

  20. Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C., Kautz, J.: Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27(5), 32–39 (2008)

    Article  Google Scholar 

  21. Ritschel, T., Grosch, T., Kautz, J., Eller, S.: Interactive illumination with coherent shadow maps. In Proceedings of the EGSR 2007, pp. 61–72 (2007)

  22. Ritschel, T., Grosch, T., Kautz, J., Seidel, H.P.: Interactive global illumination based on coherent surface shadow maps. In: Proceedings of Graphics Interface 2008 (2008)

  23. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24(3), 1098–1107 (2005)

    Article  Google Scholar 

  24. Walter, B., Khungurn, P., Bala, K.: Bidirectional lightcuts. ACM Trans. Graph. 31(4), 13–15 (2012)

    Article  Google Scholar 

  25. Wang, R., Huo, Y., Yuan, Y., Zhou, K., Hua, W., Bao, H.: Gpu-based out-of-core many-lights rendering. ACM Trans. Graph. (TOG) 32(6), 210 (2013)

    Google Scholar 

  26. Wu, Y.T., Chuang, Y.Y.: Visibilitycluster: average directional visibility for many-light rendering. IEEE Trans. Vis. Comput. Graph. 19(9), 1566–1578 (2013)

    Article  Google Scholar 

  27. Yang, T., Hui-zhong, W., Fu, X., Liang, X.: Inverse image warping without searching. In: International Conference on Control, Automation, Robotics and Vision, pp. 386–390 (2004)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China through Projects 61272349, 61190121 and 61190125 and by the National High Technology Research and Development Program of China through 863 Program No.2013AA01A604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 46329 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, W., Li, N. et al. Intermediate shadow maps for interactive many-light rendering. Vis Comput 34, 1415–1426 (2018). https://doi.org/10.1007/s00371-017-1449-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1449-7

Keywords

Navigation