Skip to main content

Advertisement

Log in

A heuristic convexity measure for 3D meshes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper we propose a heuristic convexity measure for 3D meshes. Built upon a state-of-the-art convexity measure that employs a time-consuming genetic algorithm for optimization, our new measure projects only once a given 3D mesh onto the orthogonal 2D planes along its principal directions for an initial estimation of mesh convexity, followed by a correction calculation based on mesh slicing. Our measure experimentally shows several advantages over the state-of-the-art one: first, it accelerates the overall computation by approximately an order of magnitude; second, it properly handles those bony meshes usually overestimated by the state-of-the-art measure; third, it improves the accuracy of the state-of-the-art measure in 3D mesh retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Asafi, S., Goren, A., Cohen-Or, D.: Weak convex decomposition by lines-of-sight. Comput. Gr. Forum 32(5), 23–31 (2013)

  2. Chalmeta, R., Hurtado, F., Sacristan, V., Saumell, M.: Measuring regularity of convex polygons. Comput. Aided Des. 45, 93–104 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Gr. 28, 1–12 (2009)

  4. Ghosh, M., Amato, N.M., Lu, Y., Lien, J.M.: Fast approximate convex decomposition using relative concavity. Comput. Aided Des. 45(2), 494–504 (2013)

    Article  MathSciNet  Google Scholar 

  5. Lian, Z., Rosin, P.L., Sun, X.: Rectilinearity of 3D meshes. Int. J. Comput. Vis. 89(2–3), 130–151 (2010)

    Article  Google Scholar 

  6. Lian, Z., Godil, A.: A feature-preserved canonical form for non-rigid 3D meshes. In: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 116–123. (2011)

  7. Lian, Z., Godil, A., Rosin, P.L., Sun, X.: A new convexity measurement for 3D meshes. In: Computer Vision and Pattern Recognition, pp. 119–126. (2012)

  8. Liu, H., Liu, W., Latecki, L.J.: Convex shape decomposition. In: Computer Vision and Pattern Recognition, pp. 97–104. IEEE (2010)

  9. Pao, H.K., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In: IEEE International Conference on Computer Vision, vol. 2, pp. 948–955. IEEE (1999)

  10. Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1501–1512 (2006)

    Article  Google Scholar 

  11. Ren, Z., Yuan, J., Liu, W.: Minimum near-convex shape decomposition. IEEE Trans. Softw. Eng. 35(10), 2546–2552 (2013)

    Google Scholar 

  12. Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Mach. Vis. Appl. 14(3), 172–184 (2003)

    Article  Google Scholar 

  13. Rosin, P.L., Mumford, C.L.: A symmetric convexity measure. Comput. Vis. Image Underst. 103, 101–111 (2006)

    Article  Google Scholar 

  14. Rosin, P.L.: A two-component rectilinearity measure. Comput. Vis. Image Underst. 109, 176–185 (2008)

    Article  Google Scholar 

  15. Rosin, P.L.: Classification of pathological shapes using convexity measures. Pattern Recognit. Lett. 30, 570–578 (2009)

    Article  Google Scholar 

  16. Sarfraz, M., Ridha, A.: Content-based image retrieval using multiple shape descriptors. In: IEEE/ACS International Conference on Computer Systems and Applications, pp. 730–737. (2007)

  17. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Shape Modeling International, vol. 105. (2004)

  18. Song, Y.Z., Pickup, D., Li, C., Rosin, P., Hall, P.: Abstract art by shape classification. IEEE Trans. Vis. Comput. Gr. 19(8), 1252–1263 (2013)

    Article  Google Scholar 

  19. Zhang, J., Kaleem, S., Diego, M., Sven, D.: Retrieving articulated 3D models using medial surfaces. Mach. Vis. Appl. 19, 261–275 (2008)

    Article  MATH  Google Scholar 

  20. Zimmer, H., Campen, M., Kobbelt, L.: Efficient computation of shortest path-concavity for 3D meshes. In: Computer Vision and Pattern Recognition, pp. 2155–2162. (2013)

  21. Zunic, J., Rosin, P.L.: Rectilinearity measurements for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1193–1200 (2003)

    Article  Google Scholar 

  22. Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 26, 923–934 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Lian for his supports and patience in answering our questions. The authors would also like to thank the reviewers for their precious time and constructive comments. This work has been supported by the National Natural Science Foundation of China (61202291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Liu, L., Sheng, Y. et al. A heuristic convexity measure for 3D meshes. Vis Comput 33, 903–912 (2017). https://doi.org/10.1007/s00371-017-1385-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1385-6

Keywords

Navigation