Skip to main content

Advertisement

Log in

VizAssist: an interactive user assistant for visual data mining

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We study in this work how a user can be guided to find a relevant visualization in the context of visual data mining. We present a state of the art on the user assistance in visual and interactive methods. We propose a user assistant called VizAssist, which aims at improving the existing approaches along three directions: it uses simpler computational models of the visualizations and the visual perception guidelines, in order to facilitate the integration of new visualizations and the definition of a mapping heuristic. VizAssist allows the user to provide feedback in a visual and interactive way, with the aim of improving the data to visualization mapping. This step is performed with an interactive genetic algorithm. Finally, VizAssist aims at proposing a free on-line tool (www.vizassist.fr) that respects the privacy of the user data. This assistant can be viewed as a global interface between the user and some of the many visualizations that are implemented with D3js.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. See kdnuggets.com and the poll on “Algorithms for data analysis/data mining”.

  2. See http://bl.ocks.org/mbostock/1341021.

References

  1. Albuquerque, G., Eisemann, M., Magnor, M.: Perception-based visual quality measures. In: 2011 IEEE conference on visual analytics science and technology (VAST), pp. 13–20 (2011)

  2. Azzag, H., Picarougne, F., Guinot, C., Venturini, G.: Vrminer: a tool for multimedia database mining with virtual reality. In: Processing and Managing Complex Data for Decision Support, pp. 318–339. (2005)

  3. Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: an overview and systematization. IEEE Trans. Vis. Comput. Graph. 17(12), 2203–2212 (2011)

    Article  Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. UCI repository of machine learning databases (1998). http://archive.ics.uci.edu/ml/. http://www.ics.uci.edu/mlearn/MLRepository.html

  5. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)

    Article  Google Scholar 

  6. Boudjeloud, L., Poulet, F.: Visual interactive evolutionary algorithm for high dimensional data clustering and outlier detection. In: Ho, T.B., Cheung, D.W.L., Liu, H. (eds.) PAKDD, Lecture Notes in Computer Science, vol. 3518, pp. 426–431. Springer, Berlin (2005)

    Google Scholar 

  7. Cancino, W., Boukhelifa, N., Lutton, E.: Evographdice: Interactive evolution for visual analytics. In: IEEE proceedings of the 2012 IEEE congress on evolutionary computation, pp. 2286–2293 (2012)

  8. Casner, S.M.: Task-analytic approach to the automated design of graphic presentations. ACM Trans. Graph. (TOG) 10(2), 111–151 (1991)

    Article  Google Scholar 

  9. Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 79, 531–554 (1984)

    Article  MathSciNet  Google Scholar 

  10. Dang, T.N., Wilkinson, L.: Scagexplorer: exploring scatterplots by their scagnostics. In: Pacific visualization symposium (PacificVis), 2014 IEEE, pp. 73–80 (2014)

  11. Dasgupta, A., Kosara, R.: Pargnostics: screen-space metrics for parallel coordinates. IEEE Trans. Vis. Comput. Graph. 16(6), 1017–1026 (2010)

    Article  Google Scholar 

  12. Dawkins, R.: The Blind Watchmaker. Norton, San Mateo (1986)

    Google Scholar 

  13. Demiralp, C., Scheidegger, C.E., Kindlmann, G.L., Laidlaw, D.H., Heer, J.: Visual embedding: a model for visualization. IEEE Comput. Graph. Appl. 34(1), 10–15 (2014)

    Article  Google Scholar 

  14. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magz. 17(3), 37 (1996)

  15. Gnanamgari, S.: Information presentation through default displays. Ph.D. thesis, Philadelphia, PA, USA (1981)

  16. Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst. 5(5), 139–167 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: Proceedings of the 14th international conference on intelligent user interfaces. IUI ’09, pp. 315–324. ACM, New York, NY, USA (2009)

  18. Grammel, L., Tory, M., Storey, M.: How information visualization novices construct visualizations. IEEE Trans. Vis. Comput. Graph. 16(6), 943–952 (2010)

    Article  Google Scholar 

  19. Guettala, A.E.T., Bouali, F., Guinot, C., Venturini, G.: A user assistant for the selection and parameterization of the visualizations in visual data mining. 16th international conference on information visualisation, pp. 252–257 (2012)

  20. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT press, Cambridge (2001)

  21. Hanrahan, P., Stolte, C., Mackinlay, J.: Visual analysis for everyone: understanding data exploration and visualization. In: Tableau Software Inc., p. 27 (2007)

  22. Healey, C., Kocherlakota, S., Rao, V., Mehta, R., St Amant, R.: Visual perception and mixed-initiative interaction for assisted visualization design. IEEE Trans. Vis. Comput. Graph. 14(2), 396–411 (2008)

    Article  Google Scholar 

  23. Healey, C.G., Amant, R.S., Elhaddad, M.S.: Via: A perceptual visualization assistant. In: In 28th workshop on advanced imagery pattern recognition (AIPR-99), pp. 2–11 (1999)

  24. Heer, J., van Ham, F., Carpendale, S., Weaver, C., Isenberg, P.: Creation and collaboration: engaging new audiences for information visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D. North, C. (eds.) Information Visualization vol. 4950, pp. 92–133. Springer Berlin, Heidelberg (2008)

  25. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)

    Google Scholar 

  26. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1, 69–91 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Key, A., Howe, B., Perry, D., Aragon, C.: Vizdeck: self-organizing dashboards for visual analytics. In: Proceedings of the 2012 ACM SIGMOD International conference on management of data. SIGMOD ’12, pp. 681–684. ACM, New York, NY, USA (2012)

  28. Kim, H.S., Cho, S.B.: Application of interactive genetic algorithm to fashion design. Eng. Appl. Artif. Intell. 13(6), 635–644 (2000)

    Article  Google Scholar 

  29. Lange, S., Schumann, H., Mller, W., Krmker, D.: Problem-oriented visualisation of multi-dimensional data sets. pp. 1–15. Singapore : World Scientific, c1995. (1995)

  30. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5(2), 110–141 (1986)

    Article  Google Scholar 

  31. Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph. 13(6), 1137–1144 (2007)

    Article  Google Scholar 

  32. Maguire, E., Rocca-Serra, P., Sansone, S.A., Davies, J., Chen, M.: Taxonomy-based glyph design—with a case study on visualizing workflows of biological experiments. IEEE Trans. Vis. Comput. Graph. 18(12), 2603–2612 (2012)

    Article  Google Scholar 

  33. Pineo, D., Ware, C.: Data visualization optimization via computational modeling of perception. IEEE Trans. Vis. Comput. Graph. 18(2), 309–320 (2012)

    Article  Google Scholar 

  34. Roth, S.F., Kolojejchick, J., Mattis, J., Goldstein, J.: Interactive graphic design using automatic presentation knowledge. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 112–117. ACM (1994)

  35. Schneidewind, J., Sips, M., Keim, D.A.: Pixnostics: Towards measuring the value of visualization. In: Visual Analytics Science And Technology, 2006 IEEE Symposium On, pp. 199–206. IEEE (2006)

  36. Schulz, H.J., Nocke, T., Heitzler, M., Schumann, H.: A design space of visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2366–2375 (2013)

    Article  Google Scholar 

  37. Senay, H., Ignatius, E.: Vista: a knowledge based system for scientific data visualization. Tech. rep. (1992)

  38. Senay, H., Ignatius, E.: A knowledge-based system for visualization design. IEEE Comput. Graph. Appl. 14(6), 36–47 (1994)

    Article  Google Scholar 

  39. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE symposium on visual languages, VL ’96, pp. 336–343. IEEE Computer Society (1996)

  40. Siegel, S., Castellan, N.: Non-parametric Statistics for the Behavioural Sciences. Mc Graw-Hill book company, New York (1988)

    Google Scholar 

  41. Smith, J.R.: Designing biomorphs with an interactive genetic algorithm. In: Proceedings of the fourth international conference on genetic algorithms, pp. 535–538 (1991)

  42. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd international conference on genetic algorithms, pp. 2–9. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1989). http://dl.acm.org/citation.cfm?id=645512.657265

  43. Tokui, N., Iba, H.: Music composition with interactive evolutionary computation. Communication 17(2), 215–226 (2000)

    Google Scholar 

  44. Venturini, G., Slimane, M., Morin, F., Asselin de Beauville, J.P.: On using interactive genetic algorithms for knowledge discovery in databases. In: Back, T. (ed.) Genetic Algorithms: Proceedings of the Seventh International Conference, pp. 696–703. Morgan Kaufmann, Michigan State University, East Lansing, MI, USA (1987)

    Google Scholar 

  45. Verbeke, G., Molenberghs, G.: Linear Mixed Models in Practice: A SAS-Oriented Approach. Springer, New York (1997)

    Book  MATH  Google Scholar 

  46. Voigt, M., Pietschmann, S., Grammel, L., Meißner, K.: Context-aware recommendation of visualization components. In: eKNOW 2012, the fourth international conference on information, process, and knowledge management, pp. 101–109 (2012)

  47. van Wijk, J.J.: Model-based visualization-computing perceptually optimal visualizations. In: Mathematical foundations of scientific visualization, computer graphics, and massive data exploration, pp. 343–350. Springer, Berlin (2009)

  48. Wright, A.: Genetic algorithms for real parameter optimization. Found. Genet. Algorithms 1, 205–218 (1991)

    Article  MathSciNet  Google Scholar 

  49. Yi, J.S., Ah Kang, Y., Stasko, J.T., Jacko, J.A.: oward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1224–1231 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Jean Debarochez, Remy Pradignac and Yann-Thomas Le Moigne, the students in our school of Computer Science, for their contribution to the development of the on-line version of VizAssist. We are also grateful to the community of D3js developers for sharing their work and visualization codes. VizAssist was partially funded by the FDTE research project of the Région Centre, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Venturini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouali, F., Guettala, A. & Venturini, G. VizAssist: an interactive user assistant for visual data mining. Vis Comput 32, 1447–1463 (2016). https://doi.org/10.1007/s00371-015-1132-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1132-9

Keywords

Navigation