Skip to main content
Log in

Adaptive particles for incompressible fluid simulation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a particle-based technique for simulating incompressible fluid that includes adaptive refinement of particle sampling. Each particle represents a mass of fluid in its local region. Particles are split into several particles for finer sampling in regions of complex flow. In regions of smooth flow, neighboring particles can be merged. Depth below the surface and Reynolds number are exploited as our criteria for determining whether splitting or merging should take place. For the fluid dynamics calculations, we use the hybrid FLIP method, which is computationally simple and efficient. Since the fluid is incompressible, each particle has a volume proportional to its mass. A kernel function, whose effective range is based on this volume, is used for transferring and updating the particle’s physical properties such as mass and velocity. Our adaptive particle-based simulation is demonstrated in several scenarios that show its effectiveness in capturing fine detail of the flow, where needed, while efficiently sampling regions where less detail is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26(3), 48 (2007). doi http://doi.acm.org/10.1145/1276377.1276437

    Article  Google Scholar 

  3. Brackbill, J.U., Ruppel, H.M.: Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65(2), 314–343 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clavet, S., Beaudoin, P., Poulin, P.: Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM Siggraph/Eurographics Symposium on Computer Animation (Los Angeles, California, July 29–31, 2005). SCA ’05, pp. 219–228. ACM, New York, NY (2005). doi http://doi.acm.org/10.1145/1073368.1073400

    Chapter  Google Scholar 

  5. Desbrun, M., Gascuel, M.P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation ’96, pp. 61–76. Springer, New York, Inc., New York, NY (1996)

    Google Scholar 

  6. Desbrun, M., Cani, M.P.: Space-time adaptive simulation of highly deformable substances. In: INRIA Technical Report, No.3829. INRIA (1999). http://hal.inria.fr/inria-00072829/en/

  7. Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-lagrangian particle levle set method. Comput. Struct. 83, 479–490 (2005)

    Article  MathSciNet  Google Scholar 

  8. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002). doi http://doi.acm.org/10.1145/566654.566645

    Article  Google Scholar 

  9. Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 23–30. ACM, New York, NY (2001). doi http://doi.acm.org/10.1145/383259.383261

    Chapter  Google Scholar 

  10. Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58(5), 471–483 (1996)

    Article  Google Scholar 

  11. Greenwood, S.T., House, D.H.: Better with bubbles: enhancing the visual realism of simulated fluid. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Grenoble, France, August 27–29, 2004). Symposium on Computer Animation, pp. 287–296. Eurographics Association, Aire-la-Ville, Switzerland (2004). doi http://doi.acm.org/10.1145/1028523.1028562

  12. Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. J. Fluids. Phys. 181(8), (1965)

  13. Hong, J.M., Kim, C.H.: Discontinuous fluids. ACM Trans. Graph. 24(3), 915–920 (2005). doi http://doi.acm.org/10.1145/1073204.1073283

    Article  MathSciNet  Google Scholar 

  14. Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25(3), 805–811 (2006). doi http://doi.acm.org/10.1145/1141911.1141959

    Article  Google Scholar 

  15. Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 335–344. Eurographics Association, Aire-la-Ville, Switzerland (2006)

    Google Scholar 

  16. Koshizuka, S., Tamako, H., Oka, Y.: A particle method for incompressible viscous flow with fluid fragmentation. Comput. Fluid Dyn. 181(4), 29–46 (1995)

    Google Scholar 

  17. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987). doi http://doi.acm.org/10.1145/37402.37422

    Article  Google Scholar 

  18. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004). doi http://doi.acm.org/10.1145/1015706.1015745

    Article  Google Scholar 

  19. Lucy, B.L.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  20. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159. Eurographics Association, Aire-la-Ville, Switzerland (2003)

    Google Scholar 

  21. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., Whitaker, R.: Particle Based Simulation of Fluids (2003). citeseer.ist.psu.edu/article/premoze03particlebased.html

  22. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans., I. Ser. 174, 935–982 (1883)

    Article  Google Scholar 

  23. Song, O.Y., Shin, H., Ko, H.S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005)

    Article  Google Scholar 

  24. Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. International Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York, NY (1999). doi http://doi.acm.org/10.1145/311535.311548

  25. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74, 603–627 (2004)

    Article  Google Scholar 

  26. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005). doi http://doi.acm.org/10.1145/1073204.1073298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woosuck Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, W., House, D. & Keyser, J. Adaptive particles for incompressible fluid simulation. Visual Comput 24, 535–543 (2008). https://doi.org/10.1007/s00371-008-0234-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0234-z

Keywords

Navigation