Skip to main content
Log in

Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A numerical scheme based on polynomials and finite difference method is developed for numerical solutions of two-dimensional linear and nonlinear Sobolev equations. In this approach, finite difference method is applied for the discretization of time derivative whereas space derivatives are approximated by two-dimensional Lucas polynomials. Applying the procedure and utilizing finite Fibonacci sequence, differentiation matrices are derived. With the help of this technique, the differential equations have been transformed to system of algebraic equations, the solution of which compute unknown coefficients in Lucas polynomials. Substituting the unknowns constants in Lucas series, required solution of targeted equation has been obtained. Performance of the method is verified by studying some test problems and computing E2E\(_{\infty }\) and Erms (root mean square) error norms. The obtained accuracy confirms feasibility of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oruc O (2018) A computational method based on Hermite wavelets for two-dimensional Sobolev and regularized long wave equations in fluids. Numer Methods Partial Differ Equ 34(5):1693–1715

    Article  MathSciNet  MATH  Google Scholar 

  2. Haq S, Ghafoor A, Hussain M, Arifeen S (2019) Numerical solutions of two dimensional Sobolev and generalized Benjamin–Bona–Mahony–Burgers equations via Haar wavelets. Comput Math Appl 77(2):565–575

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao F, Qiu J, Zhang Q (2009) Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation. J Sci Comput 41:436–460

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhange Q, Gao F (2012) A fully-discrete local discontinuous Galerkin method for convection dominated Sobolev equation. J Sci Comput 51:107–134

    Article  MathSciNet  Google Scholar 

  5. Gu HM (1999) Characteristic finite element methods for nonlinear Sobolev equations. Appl Math Comput 102:51–62

    MathSciNet  Google Scholar 

  6. Sun T, Yang D (2002) The finite difference streamline diffusion methods for Sobolev equation with convection-dominated term. Appl Math Comput 125:325–345

    MathSciNet  MATH  Google Scholar 

  7. He S, Li H, Liu Y (2013) Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations. Front Math China 8:825–836

    Article  MathSciNet  MATH  Google Scholar 

  8. Yousefi SA, Behroozifar M, Dehghan M (2012) Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials. Appl Math Model 36:945–963

    Article  MathSciNet  MATH  Google Scholar 

  9. Heydari MH, Atangana A, Avazzadeh Z (2019) Chebyshev polynomials for the numerical solution of fractal–fractional model of nonlinear Ginzburg–Landau equation. Eng Comput 7:1–12

    Google Scholar 

  10. Zhao T, Zhang X, Huo J, Su W, Liu Y, Wu Y (2012) Optimal error estimate of Chebyshev–Legendre spectral method for the generalized Benjamin–Bona–Mahony–Burgers equations. Abstr Appl Anal 2012:106343. https://doi.org/10.1155/2012/106343

    Article  MATH  Google Scholar 

  11. Dehghan M, Saray BN, Lakestani M (2012) Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes for the numerical solution of the nonlinear generalized Burgers–Huxley equation. Math Comput Model 55:1129–1142

    Article  MathSciNet  MATH  Google Scholar 

  12. Heydari MH, Avazzadeh Z, Cattani C (2020) Numerical solution of variable-order space-time fractional KdV–Burgers–Kuramoto equation by using discrete Legendre polynomials. Eng Comput. https://doi.org/10.1007/s00366-020-01181-x

    Article  Google Scholar 

  13. Heydari MH, Avazzadeh Z (2020) Chebyshev–Gauss–Lobatto collocation method for variable-order time fractional generalized Hirota-Satsuma coupled KdV system. Eng Comput. https://doi.org/10.1007/s00366-020-01125-5

    Article  Google Scholar 

  14. Tuan NH, Nemati S, Ganji RM, Jafari H (2020) Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials. Eng Comput. https://doi.org/10.1007/s00366-020-01142-4

    Article  Google Scholar 

  15. Heydari MH, Avazzadeh Z, Cattani C (2021) Discrete Chebyshev polynomials for nonsingular variable-order fractional KdV Burgers’ equation. Math Methods Appl Sci 44(2):2158–2170

    Article  MathSciNet  MATH  Google Scholar 

  16. Heydari MH, Avazzadeh Z (2020) New formulation of the orthonormal Bernoulli polynomials for solving the variable-order time fractional coupled Boussinesq–Burger’s equations. Eng Comput. https://doi.org/10.1007/s00366-020-01007-w

    Article  Google Scholar 

  17. Gulsu M, Gurbuz B, Ozturk Y, Sezer M (2011) Laguerre polynomial approach for solving linear delay difference equations. Appl Math Comput 217:6765–6776

    MathSciNet  MATH  Google Scholar 

  18. Rabiei K, Ordokhani Y (2019) Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Eng Comput 35(4):1431–1441

    Article  Google Scholar 

  19. Dehghan M, Aryanmehr S, Eslahchi MR (2013) A technique for the numerical solution of initial-value problems based on a class of Birkhoff-type interpolation method. J Comput Appl Math 244:125–139

    Article  MathSciNet  MATH  Google Scholar 

  20. Hosseininia M, Heydari MH, Hooshmandasl MR, Maalek Ghaini FM, Avazzadeh Z (2021) A numerical method based on the Chebyshev cardinal functions for variable-order fractional version of the fourth-order 2D Kuramoto–Sivashinsky equation. Math Methods Appl Sci 44(2):1831–1842

    Article  MathSciNet  MATH  Google Scholar 

  21. Sezer M, Kesan C (2000) Polynomial solutions of certain differential equations. Int J Comput Math 76(1):93–104

    Article  MathSciNet  MATH  Google Scholar 

  22. Bhrawy AH, Shomrani MM (2012) A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals. Bound Value Probl 62:1

    MathSciNet  Google Scholar 

  23. Sevin G, Savaşaneril NB, Kürkçü OK, Sezer M (2020) Lucas polynomial solution of nonlinear differential equations with variable delay. Hacet J Math Stat 49(2):553–564. https://doi.org/10.15672/hujms.460975

    Article  MathSciNet  MATH  Google Scholar 

  24. Dehestani H, Ordokhani Y, Razzaghi M (2020) Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations. Eng Comput. https://doi.org/10.1007/s00366-020-01048-1

    Article  MATH  Google Scholar 

  25. Savasanerali NB, Sezer M (2017) Hybrid Taylor–Lucas collocation method for numerical solution of high-order pantograph type delay differential equations with variables delays. Appl Math Inf Sci 11(6):1795–1801

    Article  MathSciNet  Google Scholar 

  26. Heydari MH, Atangana A (2020) An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection–dispersion equation involving derivatives with non-singular kernels. Chaos Solitons Fractals 132:109588

    Article  MathSciNet  MATH  Google Scholar 

  27. Cetin M, Sezer M, Guler C (2015) Lucas polynomial approach for system of high-order linear differential equations and residual error estimation. Math Probl Eng 2015:625984. https://doi.org/10.1155/2015/625984

    Article  MathSciNet  MATH  Google Scholar 

  28. Abd-Elhameed WM, Youssri YH (2016) Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives. Rom J Phys 61:795–813

    Google Scholar 

  29. Abd-Elhameed WM, Youssri YH (2019) Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran J Sci Technol Trans A Sci 43:543–554

    Article  MathSciNet  Google Scholar 

  30. Nadir M (2017) Lucas polynomials for solving linear integral equations. J Theor Appl Comp Sci 11:13–9

    Google Scholar 

  31. Mirzaee F, Hoseini SF (2016) Application of Fibonacci collocation method for solving Volterra Fredholm integral equations. Appl Math Comp 273:637–44

    Article  MathSciNet  MATH  Google Scholar 

  32. Sabermahani S, Ordokhani Y, Yousefi SA (2020) Fractional-order Fibonacci-hybrid functions approach for solving fractional delay differential equations. Eng Comput 36(2):795–806

    Article  MATH  Google Scholar 

  33. Abd-Elhameed WM, Youssri YH (2016) A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations. Entropy 18:345

    Article  MathSciNet  Google Scholar 

  34. Abd-Elhameed WM, Youssri YH (2017) Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran J Sci Technol A. https://doi.org/10.1007/s40995-017-0420-9

    Article  MATH  Google Scholar 

  35. Oruc O (2017) A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation. Comp Math Appl 74(2):3042–3057

    Article  MathSciNet  MATH  Google Scholar 

  36. Oruc O (2018) A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun Nonlinear Sci Numer Simul 57:14–25

    Article  MathSciNet  MATH  Google Scholar 

  37. Ali I, Haq S, Nisar KS, Baleanu D (2021) An efficient numerical scheme based on Lucas polynomials for the study of multidimensional Burgers-type equations. Adv Differ Equ 2021(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  38. Gao F, Wang X (2015) A modified weak Galerkin finite element method for Sobolev equation. J Comput Math 33:307–322

    Article  MathSciNet  MATH  Google Scholar 

  39. Siriguleng H, Hong L, Yang L (2013) Time discontinuous Galerkin space–time finite element method for nonlinear Sobolev equations. Front Math China 8:825–836

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirajul Haq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, S., Ali, I. Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials. Engineering with Computers 38 (Suppl 3), 2059–2068 (2022). https://doi.org/10.1007/s00366-021-01327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01327-5

Keywords

Navigation