Skip to main content
Log in

More accurate and stable time integration scheme

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A novel second-order time integration algorithm for solving dynamic problems is presented. To demonstrate the abilities of this formulation, several linear and geometrical nonlinear structures are solved. The outcomes of authors’ technique are compared with the ones obtained by other researchers. The findings not only confirm the improved accuracy of the new scheme but also indicate that the suggested method remains stable when the trapezoidal rule fails to produce a stable solution. Effectively maximizing high-frequency numerical dissipation, without inducing excessive algorithmic damping in the important low-frequency region, is one of the proposed tactic merits. Spurious oscillations are removed, and small numerical dispersion error is achieved, when using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Kuhl D, Crisfield MA (1999) Energy—conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45:569–599

    Article  MathSciNet  MATH  Google Scholar 

  2. Bathe KJ (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput Struct 85:437–445

    Article  MathSciNet  Google Scholar 

  3. Chang SY (2010) A new family of explicit methods for linear structural dynamics. Comput Struct 88:755–772

    Article  Google Scholar 

  4. Chang SY (2014) A family of non-iterative integration methods with desired numerical dissipation. Int J Numer Methods Eng 100:62–86

    Article  Google Scholar 

  5. Chang SY (2013) An explicit structure-dependent algorithm for pseudodynamic testing. Eng Struct 46:511–525

    Article  Google Scholar 

  6. Kolay C, Ricles M (2014) Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthquake Eng Struct Dynam 43:1361–1380

    Article  Google Scholar 

  7. Houbolt JC (1950) A recurrence matrix solution for the dynamic response of elastic aircraft. J Aeronaut Sci 17:540–550

    Article  MathSciNet  Google Scholar 

  8. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div (ASCE) 85(EM3):67–94

    Google Scholar 

  9. Wilson EL, Farhoomand I, Bathe KJ (1973) Nonlinear dynamic analysis of complex structures. Earthquake Eng Struct Dynam 1:241–252

    Article  Google Scholar 

  10. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct Dynam 5:283–292

    Article  Google Scholar 

  11. Wood WL, Bossak M, Zienkiewicz OC (1981) An alpha modification of Newmark’s method. Int J Numer Methods Eng 15:1562–1566

    Article  MathSciNet  Google Scholar 

  12. Bazzi G, Anderheggen E (1982) The ρ-family of algorithms for time-step integration with improved numerical dissipation. Earthquake Eng Struct Dynam 10:537–550

    Article  Google Scholar 

  13. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech Trans ASME 60:371–375

    Article  MathSciNet  MATH  Google Scholar 

  14. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice Hall, USA

    MATH  Google Scholar 

  15. Rezaiee-Pajand M, Alamatian J (2008) Implicit higher-order accuracy method for numerical integration in dynamic analysis. J Struct Eng (ASCE) 134(6):973–985

    Article  Google Scholar 

  16. Idesman AV (2007) A new high-order accurate continuous Galerkin method for linear elastodynamics problems. Comput Mech 40:261–279

    Article  MathSciNet  MATH  Google Scholar 

  17. Rezaiee-Pajand M, Sarafrazi SR (2012) On the stability and accuracy of non-linear dynamic analysis using IHOA-m and PC-m families. Struct Build 165:455–471

    Article  Google Scholar 

  18. Keierleber CW, Rosson BT (2005) Higher-order implicit dynamic time integration method. J Struct Eng (ASCE) 131(8):1267–1276

    Article  Google Scholar 

  19. Rezaiee-Pajand M, Sarafrazi SR, Hashemian M (2011) Improving stability domains of the implicit higher order accuracy method. Int J Numer Methods Eng 88:880–896

    Article  MathSciNet  MATH  Google Scholar 

  20. Hulbert M, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137:175–188

    Article  MathSciNet  MATH  Google Scholar 

  21. Rezaiee-Pajand M, Alamatian J (2008) Numerical time integration for dynamic analysis using a new higher order predictor–corrector method. Eng Comput 25(6):541–568

    Article  MATH  Google Scholar 

  22. Soroushian A, Farjoodi J (2008) A unified starting procedure for the Houbolt method. Commun Numer Methods Eng 24:1–13

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghassemieh M, Karimi-Rad M (2011) A parabolic acceleration time integration for dynamic problems. J Civil Survey Eng 45(1):35–43

    Google Scholar 

  24. Gholampour AA, Ghassemieh M, Karimi-Rad M (2013) A new unconditionally stable time integration method for analysis of nonlinear structural dynamics. J Appl Mech 80(2)

  25. Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83:2513–2524

    Article  MathSciNet  Google Scholar 

  26. Hughes TJR, Caughey TK, Liu WK (1978) Finite-element methods for nonlinear elastodynamics which conserve energy. J Appl Mech Trans ASME 45:366–370

    Article  MATH  Google Scholar 

  27. Simo JC, Tarnow N (1992) The discrete energy momentum method. Conserving algorithms for nonlinear elasto-dynamics. J Appl Math Phys 43:757–792

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuhl D, Ramm E (1996) Constraint energy momentum algorithm and its application to nonlinear dynamics of shells. Comput Methods Appl Mech Eng 136:293–315

    Article  MATH  Google Scholar 

  29. Masuri SU, Hoitink A, Zhou X, Tamma KK (2009) Algorithms by design: a new normalized time-weighted residual methodology and design of a family of energy–momentum conserving algorithms for non-linear structural dynamics. Int J Numer Methods Eng 79:1094–1146

    Article  MathSciNet  MATH  Google Scholar 

  30. Gonzalez O (2000) Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190:1763–1783

    Article  MATH  Google Scholar 

  31. Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput Mech 42:715–732

    Article  MathSciNet  MATH  Google Scholar 

  32. Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193

    Article  Google Scholar 

  33. Dong S (2010) BDF-like methods for nonlinear dynamic analysis. J Comput Phys 229:3019–3045

    Article  MathSciNet  MATH  Google Scholar 

  34. Rezaiee-Pajand M, Sarafrazi SR (2010) A mixed and multi-step higher-order implicit time integration family. J Mech Eng Sci 224:2097–2108

    Article  Google Scholar 

  35. Hoff C, Taylor RL (1990) Higher derivative explicit one step methods for nonlinear dynamic problems. Part I: design and theory. Int J Numer Methods Eng 29:275–290

    Article  MathSciNet  MATH  Google Scholar 

  36. Hoff C, Taylor RL (1990) Higher derivative explicit one step methods for nonlinear dynamic problems. Part II: practical calculations and comparison with other higher order methods. Int J Numer Methods Eng 29:291–301

    Article  MathSciNet  MATH  Google Scholar 

  37. Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs

    Google Scholar 

  38. Wang MF, Au FTK (2009) On the precise integration methods based on Padé approximations. Comput Struct 87:380–390

    Article  Google Scholar 

  39. Bathe KJ, Noh G (2012) Insight into an implicit time integration scheme for structural dynamics. Comput Struct 98:1–6

    Article  Google Scholar 

  40. Goudreau GL, Taylor RL (1973) Evaluation of numerical methods in elastodynamics. Comput Methods Appl Mech Eng 2:69–97

    Article  MathSciNet  MATH  Google Scholar 

  41. KaiPing Y (2008) A new family of generalized-α time integration algorithms without overshoot for structural dynamics. Earthquake Eng Struct Dynam 37:1389–1409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rezaiee-Pajand.

Appendix A: Coefficients

Appendix A: Coefficients

The amplification matrix for the proposed formulation has the following form:

$$ A = \left[ {\begin{array}{*{20}c} {A_{11} } && {A_{12} } && {A_{13} } \\ {A_{21} } && {A_{22} } && {A_{23} } \\ {A_{31} } && {A_{32} } && {A_{33} } \\ \end{array} } \right] $$
(A1)

where

$$ \lambda = \left( { ( 1 / ( ( 0. 5\times \omega \times \Delta {\text{t)}}^{ 2} ) )+ 0. 2 5} \right)^{( -1 )} $$
(A2)
$$ A_{1} = \left( { - 4 \times \lambda /(\Delta t^{2} )} \right) + (0.25 \times \omega \times \omega \times \lambda ) \quad {A}_{2} = - 2 \times \lambda /\Delta t $$
(A3)
$$ b_{11} = 1 + \left( {\omega^{2} \times (\Delta t^{2} ) \times (1 - \alpha ) \times (1 - \alpha )} \right) $$
(A4)
$$ A_{11} = - \left( {(\omega^{2} \times (\Delta t^{2} ) \times (1 - \alpha ) \times (1 - \alpha )} \right) + \left( {\omega^{2} \times (\Delta t^{2} ) \times \beta )} \right)/b_{11} $$
(A5)
$$ \, A_{12} = - \left( {(\omega^{2} \times (\Delta t)) + ((\omega^{2} \times (\Delta t^{2} ) \times (1 - \alpha ) \times \; (2 \times \alpha - 1) \times A_{2} )) + \; (\omega^{2} \times (\Delta t^{2} ) \times (\alpha - \beta - 0.5) \times A_{2} )} \right)/b_{11} $$
(A6)
$$ A_{13} = - \left( {(\omega^{2} ) + ((\omega^{2} \times (\Delta t^{2} ) \times (1 - \alpha ) \times (2 \times \alpha - 1) \times \; A_{1} )) + (\omega^{2} \times (\Delta t^{2} ) \times \; (\alpha - \beta - 0.5) \times A_{1})} \right)/b_{11} $$
(A7)
$$ A_{21} = \Delta t \times (1 - \alpha ) \times (1 + A_{11} ) \quad A_{22} = 1 + \left( {\Delta t \times (2 \times \alpha - 1) \times A_{2} } \right) + \left( {\Delta t \times (1 - \alpha ) \times A_{12} } \right) $$
(A8)
$$ A_{23} = \left( {\Delta t \times (2 \times \alpha - 1) \times A_{1} } \right) + \left( {\Delta t \times (1 - \alpha ) \times A_{13} } \right) $$
(A9)
$$ A_{31} = \left( {\Delta t \times (1 - \alpha ) \times A_{21} } \right) + (\Delta t^{2} \times \beta ) $$
(A10)
$$ A_{32} = (\Delta t \times \alpha ) + \left( {\Delta t \times (1 - \alpha ) \times A_{22} } \right) + \left( {(\Delta t^{2} ) \times (\alpha - \beta - 0.5) \times A_{2} } \right) $$
(A11)
$$ \begin{aligned} A_{{33}} & = 1 + \left( {\Delta t \times (1 - \alpha ) \times A_{{23}} } \right) \\ & \quad + {\text{( }}(\Delta t^{2} ) \times (\alpha - \beta - 0.5) \times A_{1} {\text{)}} \\ \end{aligned} $$
(A12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaiee-Pajand, M., Karimi-Rad, M. More accurate and stable time integration scheme. Engineering with Computers 31, 791–812 (2015). https://doi.org/10.1007/s00366-014-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0390-x

Keywords

Navigation