Skip to main content
Log in

Two-dimensional Delaunay-based anisotropic mesh adaptation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Science and engineering applications often have anisotropic physics and therefore require anisotropic mesh adaptation. In common with previous researchers on this topic, we use metrics to specify the desired mesh. Where previous approaches are typically heuristic and sometimes require expensive optimization steps, our approach is an extension of isotropic Delaunay meshing methods and requires only occasional, relatively inexpensive optimization operations. We use a discrete metric formulation, with the metric defined at vertices. To map a local sub-mesh to the metric space, we compute metric lengths for edges, and use those lengths to construct a triangulation in the metric space. Based on the metric edge lengths, we define a quality measure in the metric space similar to the well-known shortest-edge to circumradius ratio for isotropic meshes. We extend the common mesh swapping, Delaunay insertion, and vertex removal primitives for use in the metric space. We give examples demonstrating our scheme’s ability to produce a mesh consistent with a discontinuous, anisotropic mesh metric and the use of our scheme in solution adaptive refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The term error is used in the cited paper, however, the metric length can be defined as equivalent to the error and so we will use the term length to be consistent with usage later in the paper.

  2. Note that this is not necessarily the triangle it was inserted to split!

  3. This procedure fails only in rare near-boundary cases in two dimensions, although its three-dimensional analog is less robust; see Ollivier-Gooch [23] for more details.

References

  1. Ait-Ali-Yahia D, Baruzzi G, Habashi WG, Fortin M, Dompierre J, Vallet MG (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part II: structured grids. Int J Numer Methods Fluids 39(8):657–673

    Article  MATH  MathSciNet  Google Scholar 

  2. Balasubramanian R, Newman JC III (2007) Comparison of adjoint-based and feature-based grid adaptation for functional outputs. Int J Numer Methods Fluids 53:1541–1569

    Article  MATH  Google Scholar 

  3. Boivin C, Ollivier-Gooch CF (2002) Guaranteed-quality triangular mesh generation for domains with curved boundaries. Int J Numer Methods Eng 55(10):1185–1213

    Article  MATH  Google Scholar 

  4. Buscaglia GC, Dari EA (1997) Anisotropic mesh optimization and its application in adaptivity. Int J Numer Methods Eng 40:4119–4136

    Article  MATH  Google Scholar 

  5. Chew LP (1989) Guaranteed-quality triangular meshes. Technical Report TR-89-983, Department of Computer Science, Cornell University

  6. Dompierre J, Vallet MG, Bourgault Y, Fortin M, Habashi WG (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III. Unstructured meshes. Int J Numer Methods Fluids 39(8):675–702

    Article  MATH  MathSciNet  Google Scholar 

  7. Freitag LA, Ollivier-Gooch CF (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40(21):3979–4002

    Article  MATH  MathSciNet  Google Scholar 

  8. Habashi WG, Dompierre J, Bourgault Y, Ait-Ali-Yahia D, Fortin M, Vallet MG (2000) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles. Int J Numer Methods Fluids 32(6):725–744

    Article  MATH  MathSciNet  Google Scholar 

  9. Johnson RA (1929) Modern geometry: an elementary treatise on the geometry of the triangle and the circle. Houghton Mifflin, Boston

    MATH  Google Scholar 

  10. Labelle F, Shewchuk JR (2003) Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Proceedings of the nineteenth annual symposium on computational geometry. Association for Computing Machinery, pp 191–200

  11. Landsberg AM (1990) Adaptation for vortex flows using a 3-d finite element solver. Master’s thesis, Massachusetts Institute of Technology

  12. Lee MC, Joun MS, Lee JK (2007) Adaptive tetrahedral element generation and refinement to improve the quality of bulk metal forming simulation. Finite Elem Anal Des 10:788–802

    Article  Google Scholar 

  13. Li X, Shephard M, Beall M (2005) 3-D anisotropic mesh adaptation by mesh modifications. Comput Methods Appl Mech Eng 194(48–49):4915–4950

    Article  MATH  MathSciNet  Google Scholar 

  14. Marcum DL, Gaither KP (1997) Solution adaptive unstructured grid generation using pseudo-pattern recognition techniques. In: Proceedings of the 13th AIAA CFD conference, AIAA 97-1860

  15. Mavriplis D, Jameson A (1987) Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes. AIAA paper 87-0353

  16. Michalak C, Ollivier-Gooch C (2007) Matrix-explicit GMRES for a higher-order accurate inviscid compressible flow solver. In: Proceedings of the 18th AIAA CFD conference

  17. Miller GL, Talmor D, Teng S-H (1999) Optimal coarsening of unstructured meshes. J Algorithm 31(1):29–65

    Article  MATH  MathSciNet  Google Scholar 

  18. Modiano DL, Murman EM (1994) Adaptive computations of flow around a delta-wing with vortex breakdown. AIAA J 32(7):1545–1547

    Article  Google Scholar 

  19. Nejat A, Ollivier-Gooch C (2008) A high-order accurate unstructured finite volume Newton–Krylov algorithm for inviscid compressible flows. J Comput Phys 227(4):2592–2609

    Google Scholar 

  20. Nemec M, Aftosmis MJ (2007) Adjoint error estimation and adaptive refinement for embedded-boundary cartesian meshes. In: Proceedings of the 18th AIAA CFD conference

  21. Ollivier-Gooch CF (1998) An unstructured mesh improvement toolkit with application to mesh improvement, generation and (de-)refinement. AIAA 98-0218

  22. Ollivier-Gooch CF (1998–2009) GRUMMP—generation and refinement of unstructured, mixed-element meshes in parallel. http://tetra.mech.ubc.ca/GRUMMP

  23. Ollivier-Gooch CF (2003) Coarsening unstructured meshes by edge contraction. Int J Numer Methods Eng 57(3):391–414

    Article  MATH  Google Scholar 

  24. Ollivier-Gooch CF, Van Altena M (2002) A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. J Comput Phys 181(2):729–752

    Article  MATH  Google Scholar 

  25. Pagnutti D, Ollivier-Gooch C (2009) A generalized framework for high order anisotropic mesh adaptation. Comput Struct (to appear)

  26. Pulliam TH (1985) Efficient solution methods for the Navier–Stokes equations. In: Numerical techniques for viscous flow computation in turbomachinery bladings, von Kármán Institute for fluid dynamics lecture series. von Kármán Institute, Rhode-St.-Genese, Belgium

  27. Radespiel R (1989) A cell-vertex multigrid method for the Navier–Stokes equations. NASA TM-101557

  28. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357–372

    Article  MATH  MathSciNet  Google Scholar 

  29. Shewchuk JR (1997) Delaunay refinement mesh generation. PhD thesis, School of Computer Science, Carnegie Mellon University

  30. Venditti DA, Darmofal DL (2000) Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow. J Comput Phys 164(1):204–227

    Article  MATH  MathSciNet  Google Scholar 

  31. Venditti DA, Darmofal DL (2002) Grid adaptation for functional outputs: application to two-dimensional inviscid flows. J Comput Phys 175(1):40–69

    Article  MathSciNet  Google Scholar 

  32. Venditti DA, Darmofal DL (2003) Grid adaptation for functional outputs: application to two-dimensional viscous flows. J Comput Phys 187:22–46

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Canadian Natural Sciences and Engineering Research Council under Special Research Opportunities Grant SRO-299160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Ollivier-Gooch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagnutti, D., Ollivier-Gooch, C. Two-dimensional Delaunay-based anisotropic mesh adaptation. Engineering with Computers 26, 407–418 (2010). https://doi.org/10.1007/s00366-009-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-009-0143-4

Keywords

Navigation