Skip to main content
Log in

Wiener’s Lemma for Infinite Matrices II

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper, we introduce a class of infinite matrices related to the Beurling algebra of periodic functions, and we show that it is an inverse-closed subalgebra of \({\mathcal{B}}(\ell^{q}_{w})\), the algebra of all bounded linear operators on the weighted sequence space \(\ell^{q}_{w}\), for any 1≤q<∞ and any discrete Muckenhoupt A q -weight w.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldroubi, A., Baskakov, A., Krishtal, I.: Slanted matrices, Banach frames, and sampling. J. Funct. Anal. 255, 1667–1691 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant space. SIAM Rev. 43, 585–620 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan, R.: The noncommutative Wiener lemma, linear independence, and special properties of the algebra of time-frequency shift operators. Trans. Am. Math. Soc. 360, 3921–3941 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness and localization of frames I. Theory; II. Gabor system. J. Fourier Anal. Appl. 12, 105–143 (2006), 309–344

    Article  MathSciNet  MATH  Google Scholar 

  5. Balan, R., Krishtal, I.: An almost periodic noncommutative Wiener’s lemma. J. Math. Anal. Appl. 370, 339–349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baskakov, A.G.: Wiener’s theorem and asymptotic estimates for elements of inverse matrices. Funkt. Anal. Prilozh. 24, 64–65 (1990). Translation in Funct. Anal. Appl. 24, 222–224 (1990)

    Article  MathSciNet  Google Scholar 

  7. Baskakov, A.G.: Asymptotic estimate for elements of matrices of inverse operators, and harmonic analysis. Sib. Mat. Zh. 38(1), 14–28 (1997). Translation in Sib. Math. J. 38(1), 10–22 (1997)

    Article  MathSciNet  Google Scholar 

  8. Belinskii, E.S., Liflyand, E.R., Trigub, R.M.: The Banach algebra A and its properties. J. Fourier Anal. Appl. 3, 103–129 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beurling, A.: On the spectral synthesis of bounded functions. Acta Math. 81, 225–238 (1949)

    Article  MATH  Google Scholar 

  10. Bochner, S., Phillips, R.S.: Absolutely convergent Fourier expansions for non-commutative normed rings. Ann. Math. 43, 409–418 (1942)

    Article  MathSciNet  Google Scholar 

  11. Borwein, D.: Linear functionals connected with strong Cesáro summability. J. Lond. Math. Soc. 40, 628–634 (1965)

    Article  MATH  Google Scholar 

  12. Brandenburg, L.: On identifying the maximal ideals in Banach algebra. J. Math. Anal. Appl. 50, 489–510 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christensen, O., Strohmer, T.: The finite section method and problems in frame theory. J. Approx. Theory 133, 221–237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlke, S., Fornasier, M., Gröchenig, K.: Optimal adaptive computations in the Jaffard algebra and localized frames. J. Approx. Theory 162, 153–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feichtinger, H.: An elementary approach to Wiener’s third Tauberian theorem for the Euclidean n-space. In: Symposia Mathematica, Vol. XXIX, Cortona, 1984. Sympos. Math., vol. XXIX, pp. 267–301. Academic Press, New York (1987)

    Google Scholar 

  17. Feichtinger, H.G., Weisz, F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Camb. Philos. Soc. 140, 509–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fendler, G., Gröchenig, K., Leinert, M.: Symmetry of weighted L 1-algebras and the GRS-condition. Bull. Lond. Math. Soc. 38, 625–635 (2006)

    Article  MATH  Google Scholar 

  19. Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. Elsevier, New York (1985)

    MATH  Google Scholar 

  20. Gelfand, I.M., Raikov, D.A., Silov, G.E.: Commutative Normed Rings. Chelsea, New York (1964)

    Google Scholar 

  21. Gohberg, I., Kaashoek, M.A., Woerdeman, H.J.: The band method for positive and strictly contractive extension problems: an alternative version and new applications. Integral Equ. Oper. Theory 12, 343–382 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gröchenig, K.: Wiener’s lemma: theme and variations, an introduction to spectral invariance and its applications. In: Massopust, P., Forster, B. (eds.) Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis. Birkhäuser, Boston (2010)

    Google Scholar 

  23. Gröchenig, K.: Time-frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam. 22, 703–724 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Gröchenig, K., Klotz, A.: Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices. Constr. Approx. 32, 429–466 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2003)

    Article  Google Scholar 

  26. Gröchenig, K., Leinert, M.: Symmetry of matrix algebras and symbolic calculus for infinite matrices. Trans. Am. Math. Soc. 358, 2695–2711 (2006)

    Article  MATH  Google Scholar 

  27. Gröchenig, K., Rzeszotnik, Z.: Almost diagonalization of pseudodifferential operators. Ann. Inst. Fourier 58, 2279–2314 (2008)

    MATH  Google Scholar 

  28. Gröchenig, K., Rzeszotnik, Z., Strohmer, T.: Convergence analysis of the finite section method and Banach algebras of matrices. Integral Equ. Oper. Theory 67, 183–202 (2010)

    Article  MATH  Google Scholar 

  29. Gröchenig, K., Strohmer, T.: Pseudodifferential operators on locally compact Abelian groups and Sjöstrand’s symbol class. J. Reine Angew. Math. 613, 121–146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jaffard, S.: Properiétés des matrices bien localisées prés de leur diagonale et quelques applications. Ann. Inst. Henri Poincaré 7, 461–476 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Krishtal, I.: Wiener’s lemma and memory localization. Preprint (2009)

  32. Krishtal, I., Okoudjou, K.A.: Invertibility of the Gabor frame operator on the Wiener amalgam space. J. Approx. Theory 153, 212–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kurbatov, V.G.: Algebras of difference and integral operators. Funkt. Anal. Prilozh. 24, 87–88 (1990)

    MathSciNet  Google Scholar 

  34. Lemarié-Rieusset, P.G.: Ondelettes et poids de Muckenhoupt. Stud. Math. 108, 127–147 (1994)

    MATH  Google Scholar 

  35. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. Naimark, M.A.: Normed Algebras. Wolters-Noordhoff Publishing, Groningen (1972)

    Google Scholar 

  37. Rosenblum, M.: Summability of Fourier series in L p(d μ). Trans. Am. Math. Soc. 105, 32–42 (1962)

    MathSciNet  MATH  Google Scholar 

  38. Schur, I.: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen. J. Reine Angew. Math. 140, 1–28 (1911)

    Article  MATH  Google Scholar 

  39. Shin, C.E., Sun, Q.: Stability of localized operators. J. Funct. Anal. 256, 2417–2439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sjöstrand, J.: Wiener type algebra of pseudodifferential operators, Centre de Mathematiques, Ecole Polytechnique, Palaiseau France, Seminaire 1994–1995, December 1994

  41. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  42. Sun, Q.: Wiener’s lemma for infinite matrices with polynomial off-diagonal decay. C. R. Acad. Sci. Paris, Ser. I 340, 567–570 (2005)

    MATH  Google Scholar 

  43. Sun, Q.: Non-uniform sampling and reconstruction for signals with finite rate of innovations. SIAM J. Math. Anal. 38, 1389–1422 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Am. Math. Soc. 359, 3099–3123 (2007)

    Article  MATH  Google Scholar 

  45. Sun, Q.: Wiener’s lemma for localized integral operators. Appl. Comput. Harmon. Anal. 25, 148–167 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, Q.: Frames in spaces with finite rate of innovations. Adv. Comput. Math. 28, 301–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun, Q.: Stability criterion for convolution-dominated infinite matrices. Proc. Am. Math. Soc. 138, 3933–3943 (2010)

    Article  MATH  Google Scholar 

  48. Takesaki, M.: Theory of Operator Algebra I. Springer, Berlin (1979)

    Google Scholar 

  49. Telyakovskii, S.A.: On a sufficient condition of Sidon for the integrability of trigonometric series. Mat. Zametki 14, 317–328 (1973)

    MathSciNet  Google Scholar 

  50. Tessera, R.: Left inverses of matrices with polynomial decay. J. Funct. Anal. 259, 2793–2813 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wiener, N.: Tauberian theorem. Ann. Math. 33, 1–100 (1932)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Sun.

Additional information

Communicated by Karlheinz Groechenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q. Wiener’s Lemma for Infinite Matrices II. Constr Approx 34, 209–235 (2011). https://doi.org/10.1007/s00365-010-9121-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9121-8

Keywords

Mathematics Subject Classification (2000)

Navigation