Skip to main content
Log in

Determinants of coronary blood flow in sandbar sharks, Carcharhinus plumbeus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The coronary circulation first appeared in the chordate lineage in cartilaginous fishes where, as in birds and mammals but unlike most teleost fishes, it supplies arterial blood to the entire myocardium. Despite the pivotal position of elasmobranch fishes in the evolution of the coronary circulation, the determinants of coronary blood flow have never been investigated in this group. Elasmobranch fishes are of special interest because of the morphological arrangement of their cardiomyocytes. Unlike teleosts, the majority of the ventricular myocardium in elasmobranch fishes is distant to the venous blood returning to the heart (i.e., the luminal blood). Also, the majority of the myocardium is in close association with the coronary circulation. To determine the relative contribution of the coronary and luminal blood supplies to cardiovascular function in sandbar sharks, Carcharhinus plumbeus, we measured coronary blood flow while manipulating cardiovascular status using acetylcholine and adrenaline. By exploring inter- and intra-individual variation in cardiovascular variables, we show that coronary blood flow is directly related to heart rate (R 2 = 0.6; P < 0.001), as it is in mammalian hearts. Since coronary blood flow is inversely related to coronary resistance both in vivo and in vitro, we suggest that in elasmobranch fishes, changes in heart rate mediate changes in coronary vascular resistance, which adjust coronary blood flow appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Mention of trade names or commercial companies is for identification purposes only and does not imply endorsement by the National Marine Fisheries Service, NOAA.

References

  • Axelsson M (1994) The coronary circulation: a fish perspective. Braz J Med Biol Res Rev Bras Pesqui Med E Biol Soc Bras Biofis Al 28:1167–1177

    Google Scholar 

  • Axelsson M, Farrell AP (1993) Coronary blood flow in vivo in the coho salmon (Oncorhynchus kisutch). Am J Physiol Regul Integr Comp Physiol 264:R963–R971

    CAS  Google Scholar 

  • Berne RM (1964) Regulation of coronary blood flow. Physiol Rev 44:1–29

    CAS  PubMed  Google Scholar 

  • Blake DW, Korner PI (1981) Role of baroreceptor reflexes in the hemodynamic and heart rate responses to althesin, ketamine and thiopentone anesthesia. J Auton Nerv Syst 3:55–70. doi:10.1016/0165-1838(81)90030-8

    Article  CAS  PubMed  Google Scholar 

  • Brill RW, Lai NC (2015) Elasmobranch cardiovascular system. In: Shadwick RE, Farrell AP, Brauner CJ (eds) Physiology of elasmobranch fishes: internal processes. Academic Press, London, pp 1–83

    Chapter  Google Scholar 

  • Brill R, Bushnell P, Schroff S et al (2008) Effects of anaerobic exercise accompanying catch-and-release fishing on blood-oxygen affinity of the sandbar shark (Carcharhinus plumbeus, Nardo). J Exp Mar Biol Ecol 354:132–143

    Article  Google Scholar 

  • Bushnell PG, Jones DR, Farrell AP (1992) The arterial system. In: Hoar WS, Jones DR, Farrell AP (eds) Fish physiology. Academic Press, San Diego, pp 89–139

    Google Scholar 

  • Butler PJ, Metcalfe JD (1988) Cardiovascular and respiratory systems. In: Shuttleworth TJ (ed) Physiology of elasmobranch fishes. Springer, Berlin, pp 1–47

    Chapter  Google Scholar 

  • Cameron JN (1975) Morphometric and flow indicator studies of the teleost heart. Can J Zool 53:691–698. doi:10.1139/z75-084

    Article  CAS  PubMed  Google Scholar 

  • Chopin LK, Bennett MB (1995) The regulation of branchial blood flow in the blacktip reef shark, Carcharhinus melanopterus (Carcharhinidae: Elasmobranchii). Comp Biochem Physiol A Physiol 112:35–41

    Article  Google Scholar 

  • Cox GK (2015) The functional significance and evolution of the coronary circulation in sharks. Dissertation, University of British Columbia

  • Cox GK, Kennedy GE, Farrell AP (2016) Morphological arrangement of the coronary vasculature in a shark (Squalus sucklei) and a teleost (Oncorhynchus mykiss). J Morphol. doi:10.1002/jmor.20543

    PubMed  Google Scholar 

  • Davie PS, Farrell AP (1991) The coronary and luminal circulations of the myocardium of fishes. Can J Zool 69:1993–2001

    Article  Google Scholar 

  • Davie PS, Franklin CE (1992) Myocardial oxygen consumption and mechanical efficiency of a perfused dogfish heart preparation. J Comp Physiol B 162:256–262

    Article  CAS  PubMed  Google Scholar 

  • Davie PS, Franklin CE (1993) Preliminary observations on blood flow in the coronary arteries of two school sharks (Galeorhinus australis). Can J Zool 71:1238–1241

    Article  Google Scholar 

  • Davie PS, Franklin CE, Grigg GC (1993) Blood pressure and heart rate during tonic immobility in the black tipped reef shark, Carcharhinus melanoptera. Fish Physiol Biochem 12:95–100

    Article  CAS  PubMed  Google Scholar 

  • Dowd WW, Brill RW, Bushnell PG, Musick JA (2006) Standard and routine metabolic rates of juvenile sandbar sharks (Carcharhinus plumbeus), including the effects of body mass and acute temperature change. Fish Bull 104:3

    Google Scholar 

  • Driedzic WR, Scott DL, Farrell AP (1983) Aerobic and anaerobic contributions to energy metabolism in perfused isolated sea raven (Hemitripterus americanus) hearts. Can J Zool 61:1880–1883. doi:10.1139/z83-242

    Article  CAS  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  PubMed  Google Scholar 

  • Durán AC, López-Unzu MA, Rodríguez C et al (2015) Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance. J Anat 226:501–510

    Article  PubMed  Google Scholar 

  • Farrell AP (1987) Coronary flow in a perfused rainbow trout heart. J Exp Biol 129:107–123

    CAS  PubMed  Google Scholar 

  • Farrell AP, Graham MS (1986) Effects of adrenergic drugs on the coronary circulation of Atlantic salmon (Salmo salar). Can J Zool 64:481–484

    Article  CAS  Google Scholar 

  • Farrell AP, Steffensen JF (1987) Coronary ligation reduces maximum sustained swimming speed in chinook salmon, Oncorhynchus tshawytscha. Comp Biochem Physiol A Physiol 87:35–37. doi:10.1016/0300-9629(87)90421-X

    Article  CAS  Google Scholar 

  • Farrell AP, Wood S, Hart T, Driedzic WR (1985) Myocardial oxygen consumption in the sea raven, Hemitripterus americanus: the effects of volume loading, pressure loading and progressive hypoxia. J Exp Biol 117:237–250

    Google Scholar 

  • Farrell AP, Davie PS, Franklin CE et al (1992) Cardiac physiology in tunas. I. In vitro perfused heart preparations from yellowfin and skipjack tunas. Can J Zool 70:1200–1210

    Article  Google Scholar 

  • Farrell AP, Farrell ND, Jourdan H, Cox GK (2012) A perspective on the evolution of the coronary circulation in fishes and the transition to terrestrial life. In: Sedmera D, Wang T (eds) Ontogeny and phylogeny of the vertebrate heart. Springer, New York, pp 75–102

    Chapter  Google Scholar 

  • Franklin C, Axelsson M (1994) Coronary hemodynamics in elasmobranchs and teleosts. Cardioscience 5:155–161

    CAS  PubMed  Google Scholar 

  • Gamperl A, Pinder A, Boutilier R (1994a) Effect of coronary ablation and adrenergic stimulation on in vivo cardiac performance in trout (Oncorhynchus mykiss). J Exp Biol 186:127–143

    CAS  PubMed  Google Scholar 

  • Gamperl A, Pinder A, Grant R, Boutilier R (1994b) Influence of hypoxia and adrenaline administration on coronary blood flow and cardiac performance in seawater rainbow trout (Oncorhynchus mykiss). J Exp Biol 193:209–232

    CAS  PubMed  Google Scholar 

  • Gamperl AK, Axelsson M, Farrell AP (1995) Effects of swimming and environmental hypoxia on coronary blood flow in rainbow trout. Am J Physiol Regul Integr Comp Physiol 269:R1258–R1266

    CAS  Google Scholar 

  • Graham MS, Farrell AP (1990) Myocardial oxygen consumption in trout acclimated to 5°C and 15°C. Physiol Zool 63:536–554

    Article  Google Scholar 

  • Grant IS, Nimmo WS, Mcnicol LR, Clements JA (1983) Ketamine disposition in children and adults. Br J Anaesth 55:1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Kent B, Peirce EC II (1978) Cardiovascular responses to changes in blood gases in dogfish shark, Squalus acanthias). Comp Biochem Physiol 60:37–44

    Article  CAS  Google Scholar 

  • Khouri EM, Gregg DE, Rayford CR (1965) Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res 17:427–437

    Article  CAS  PubMed  Google Scholar 

  • Komatsu T, Singh PK, Kimura T et al (1995) Differential effects of ketamine and midazolam on heart rate variability. Can J Anaesth 42:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Lai NC, Graham JB, Lowell WR, Shabetai R (1989) Elevated pericardial pressure and cardiac output in the leopard shark Triakis semifasciata during exercise: the role of the pericardioperitoneal canal. J Exp Biol 147:263–277

    Google Scholar 

  • Lai NC, Graham IB, Burnett L (1990) Blood respiratory properties and the effect of swimming on blood gas transport in the leopard shark Triakis semifasciata. J Exp Biol 151:161–173

    Google Scholar 

  • Miyazaki S, Guth BD, Miura T et al (1990) Changes of left ventricular diastolic function in exercising dogs without and with ischemia. Circulation 81:1058–1070

    Article  CAS  PubMed  Google Scholar 

  • Randall DJ (1968) Functional morphology of the heart in fishes. Am Zool 8:179–189

    Article  CAS  PubMed  Google Scholar 

  • Santer RM (1985) Morphology and innervation of the fish heart. Adv Anat Embryol Cell Biol 89:1–102

    Article  CAS  PubMed  Google Scholar 

  • Satchell GH (1971) Circulation in fishes. CUP Archive

  • Scaramucci GB (1695) Theroremata familiaria viros eruditos consulentia, de variis physico-medicis lucubrationibus juxta leges mecanicas. In: De motu cordis. Apud Joannem Baptistam Bustum, Urbino, Italy, pp 70–81

  • Short S, Taylor EW, Butler PJ (1979) The effectiveness of oxygen transfer during normoxia and hypoxia in the dogfish (Scyliorhinus canicula L.) before and after cardiac vagotomy. J Comp Physiol 132:289–295

    Google Scholar 

  • Smith M (1992) Capture and transportation of elasmobranchs, with emphasis on the grey nurse shark (Carcharias taurus). Mar Freshw Res 43:325–343

    Article  CAS  Google Scholar 

  • Speers-Roesch B, Brauner CJ, Farrell AP et al (2012) Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures. J Exp Biol 215:103–114

    Article  CAS  PubMed  Google Scholar 

  • Steffensen JF, Farrell AP (1998) Swimming performance, venous oxygen tension and cardiac performance of coronary-ligated rainbow trout, Oncorhynchus mykiss, exposed to progressive hypoxia. Comp Biochem Physiol A Mol Integr Physiol 119:585–592

    Article  CAS  PubMed  Google Scholar 

  • Stensløkken K-O, Sundin L, Renshaw GMC, Nilsson GE (2004) Adenosinergic and cholinergic control mechanisms during hypoxia in the epaulette shark (Hemiscyllium ocellatum), with emphasis on branchial circulation. J Exp Biol 207:4451–4461

    Article  PubMed  Google Scholar 

  • Taylor EW, Short S, Butler PJ (1977) The role of the cardiac vagus in the response of the dogfish Scyliorhinus canicula to hypoxia. J Exp Biol 70:57–75

    Google Scholar 

  • Tomanek RJ (2012) Coronary vasculature: development, structure-function, and adaptations. Springer, Berlin

    Google Scholar 

  • Tota B (1983) Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp Biochem Physiol A Physiol 76:423–437

    Article  CAS  Google Scholar 

  • Tota B (1989) Myoarchitecture and vascularization of the elasmobranch heart ventricle. J Exp Zool 252:122–135

    Article  Google Scholar 

  • von Restorff W, Holtz J, Bassenge E (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflüg Arch 372:181–185

    Article  Google Scholar 

  • West G, Heard D, Caulkett N (2008) Zoo animal and wildlife immobilization and anesthesia. Wiley, Hoboken

    Google Scholar 

  • Wood CM, Shelton G (1980) Cardiovascular dynamics and adrenergic responses of the rainbow trout in vivo. J Exp Biol 87:247–270

    CAS  PubMed  Google Scholar 

  • Yaku H, Slinker BK, Mochizuki T et al (1993) Use of 2,3-butanedione monoxime to estimate nonmechanical VO2 in rabbit hearts. Am J Physiol Heart Circ Physiol 265:H834–H842

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the entire staff of the Virginia Institute of Marine Science Eastern Shore Laboratory for their continuing and genuine hospitality, and for providing access to capture vessels, fish holding and laboratory facilities. This is contribution 3584 from the Virginia Institute of Marine Science, College of William & Mary. The opinions expressed herein are those of the authors and do not necessarily reflect the views of the US Department of Commerce—National Oceanic and Atmospheric Administration (NOAA) or any of its sub-agencies. We would also like to thank William Milsom, and Erika Eliason for providing critical comments and helpful suggestions on earlier versions of this manuscript.

Grants

This study was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGPIN 2015 05059) to APF. APF holds a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina K. Cox.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, G.K., Brill, R.W., Bonaro, K.A. et al. Determinants of coronary blood flow in sandbar sharks, Carcharhinus plumbeus . J Comp Physiol B 187, 315–327 (2017). https://doi.org/10.1007/s00360-016-1033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1033-x

Keywords

Navigation