Skip to main content
Log in

Von Willebrand factor is reversibly decreased during torpor in 13-lined ground squirrels

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

During torpor in a hibernating mammal, decreased blood flow increases the risk of blood clots such as deep vein thrombi (DVT). In other animal models platelets, neutrophils, monocytes and von Willebrand factor (VWF) have been found in DVT. Previous research has shown that hibernating mammals decrease their levels of platelets and clotting factors VIII (FVIII) and IX (FIX), increasing both bleeding time and activated partial thromboplastin time. In this study, FVIII, FIX and VWF activities and mRNA levels were measured in torpid and non-hibernating ground squirrels (Ictidomys tridecemlineatus). Here, we show that VWF high molecular weight multimers, collagen-binding activity, lung mRNA and promoter activity decrease during torpor. The VWF multimers reappear in plasma within 2 h of arousal in the spring. Similarly, FIX activity and liver mRNA both dropped threefold during torpor. In contrast, FVIII liver mRNA levels increased twofold while its activity dropped threefold, consistent with a post-transcriptional decrease in FVIII stability in the plasma due to decreased VWF levels. Finally, both neutrophils and monocytes are decreased eightfold during torpor which could slow the formation of DVT. In addition to providing insight in how blood clotting can be regulated to allow mammals to survive in extreme environments, hibernating ground squirrels provide an interesting model for studying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badimon L, Badimon JJ, Turitto VT, Fuster V (1989) Role of von Willebrand factor in mediating platelet-vessel wall interaction at low shear rate; the importance of perfusion conditions. Blood 73:961–967

    CAS  PubMed  Google Scholar 

  • Bertina RM (2003) Elevated clotting factor levels and venous thrombosis. Pathophysiol Haemost Thromb 33:395–400

    Article  PubMed  Google Scholar 

  • Bittar LF, de Paula EV, Mello TB, Siqueira LH, Orsi FL, Annichino-Bizzacchi JM (2010) Polymorphisms and mutations in vWF and ADAMTS13 genes and their correlation with plasma levels of FVIII and vWF in patients with deep venous thrombosis. Clin Appl Thromb Hemost 17:514–518

    Article  PubMed  Google Scholar 

  • Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, Crijns HJ, Wagner DD, Kietselaer BL (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33:2032–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouma HR, Dugbartey GJ, Boerema AS, Talaei F, Herwig A, Goris M, van Buiten A, Strijkstra AM, Carey HV, Henning RH, Kroese FG (2013) Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination. J Leukoc Biol 94:431–437

    Article  CAS  PubMed  Google Scholar 

  • Brill A, Fuchs TA, Chauhan AK, Yang JJ, De Meyer SF, Kollnberger M, Wakefield TW, Lammle B, Massberg S, Wagner DD (2011) von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 117:1400–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10:136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV (2013) Clearance of von Willebrand factor. J Thromb Haemost 11(Suppl 1):202–211

    Article  PubMed  Google Scholar 

  • Chauhan AK, Kisucka J, Lamb CB, Bergmeier W, Wagner DD (2007) von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins. Blood 109:2424–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD (2008) ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 205:2065–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper ST, Richters KE, Melin TE, Liu ZJ, Hordyk PJ, Benrud RR, Geiser LR, Cash SE, Simon Shelley C, Howard DR, Ereth MH, Sola-Visner MC (2012) The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets. Am J Physiol Regul Integr Comp Physiol 302:R1202–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vrij EL, Vogelaar PC, Goris M, Houwertjes MC, Herwig A, Dugbartey GJ, Boerema AS, Strijkstra AM, Bouma HR, Henning RH (2014) Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia. PLoS ne 9:e93218

    Article  Google Scholar 

  • Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD (1998) A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 95:9524–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz JA, Fuchs TA, Jackson TO, Kremer Hovinga JA, Lammle B, Henke PK, Myers DD Jr., Wagner DD, Wakefield TW (2013) Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord 1:341–348

    Article  PubMed Central  Google Scholar 

  • Diener JL, Daniel Lagasse HA, Duerschmied D, Merhi Y, Tanguay JF, Hutabarat R, Gilbert J, Wagner DD, Schaub R (2009) Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J Thromb Haemost 7:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Esmon CT (2009) Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 23:225–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Flinterman LE, van Hylckama Vlieg A, Rosendaal FR, Doggen CJ (2010) Venous thrombosis of the upper extremity: effect of blood group and coagulation factor levels on risk. Br J Haematol 149:118–123

    Article  CAS  PubMed  Google Scholar 

  • Flood VH, Gill JC, Morateck PA, Christopherson PA, Friedman KD, Haberichter SL, Hoffmann RG, Montgomery RR (2011) Gain-of-function GPIb ELISA assay for VWF activity in the Zimmerman Program for the Molecular and Clinical Biology of VWD. Blood 117:e67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs TA, Brill A, Wagner DD (2012) Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 32:1777–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassenpflug WA, Budde U, Obser T, Angerhaus D, Drewke E, Schneppenheim S, Schneppenheim R (2006) Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis. Blood 107:2339–2345

    Article  CAS  PubMed  Google Scholar 

  • Heit JA, Silverstein MD, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd (1999) Predictors of survival after deep vein thrombosis and pulmonary embolism: a population-based, cohort study. Arch Intern Med 159:445–453

    Article  CAS  PubMed  Google Scholar 

  • Heit JA, Silverstein MD, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd (2000) Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med 160:809–815

    Article  CAS  PubMed  Google Scholar 

  • Herbert JM, Bernat A, Maffrand JP (1992) Importance of platelets in experimental venous thrombosis in the rat. Blood 80:2281–2286

    CAS  PubMed  Google Scholar 

  • Jaffe EA, Hoyer LW, Nachman RL (1974) Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci USA 71:1906–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  PubMed  Google Scholar 

  • Kuipers S, Cannegieter SC, Doggen CJ, Rosendaal FR (2009) Effect of elevated levels of coagulation factors on the risk of venous thrombosis in long-distance travelers. Blood 113:2064–2069

    Article  CAS  PubMed  Google Scholar 

  • Lechler E, Penick GD (1963) Blood clotting defect in hibernating ground squirrels (Citellus tridecemlineatus). Am J Physiol 205:985–988

    CAS  PubMed  Google Scholar 

  • Lindenblatt N, Menger MD, Klar E, Vollmar B (2005) Sustained hypothermia accelerates microvascular thrombus formation in mice. Am J Physiol Heart Circ Physiol 289:H2680–2687

    Article  CAS  PubMed  Google Scholar 

  • Lyman CP, O’brien RC (1960) Circulatory changes in the thirteen-lined ground squirrel during the hibernation cycle. Bull Mus Comp Zool 124:353–372

    Google Scholar 

  • Mangold A, Alias S, Scherz T, Hofbauer T, Jakowitsch J, Panzenbock A, Simon D, Laimer D, Bangert C, Kammerlander AA, Mascherbauer J, Winter MP, Distelmaier K, Adlbrecht C, Preissner KT, Lang IM (2015) Coronary neutrophil extracellular trap burden and DNase activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 116:1182–1192

    Article  CAS  PubMed  Google Scholar 

  • Markus HS, McCollum C, Imray C, Goulder MA, Gilbert J, King A (2011) The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke 42:2149–2153

    Article  CAS  PubMed  Google Scholar 

  • McArthur MD, Milsom WK (1991) Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden-mantled (Spermophilis lateralis) ground squirrels. Physiol Zool 64:940–959

    Google Scholar 

  • Michener GR (1989) Sexual differences in interyear survival and life-span of Richardson’s ground squirrels. Can J Zool 67:1827–1831

    Article  Google Scholar 

  • Nachman R, Levine R, Jaffe EA (1977) Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest 60:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendu R, Christophe OD, Denis CV (2009) Mouse models of von Willebrand disease. J Thromb Haemost 7(Suppl 1):61–64

    Article  CAS  PubMed  Google Scholar 

  • Pengelley ET, Asmundson SM (1969) Free-running periods of endogenous circadian rhythms in the golden mantled ground squirrel, Citellus lateralis. Comp Biochem Physiol 30:177–183

    Article  CAS  PubMed  Google Scholar 

  • Pivorun EB, Sinnamon WB (1981) Blood coagulation studies in normothermic, hibernating, and aroused Spermophilus franklini. Cryobiology 18:515–520

    Article  CAS  PubMed  Google Scholar 

  • Pruss CM, Golder M, Bryant A, Hegadorn C, Haberichter S, Lillicrap D (2012) Use of a mouse model to elucidate the phenotypic effects of the von Willebrand factor cleavage mutants, Y1605A/M1606A and R1597W. J Thromb Haemost 10:940–950

    Article  CAS  PubMed  Google Scholar 

  • Reddick RL, Poole BL, Penick GD (1973) Thrombocytopenia of hibernation. Mechanism of induction and recovery. Lab Invest 28:270–278

    CAS  PubMed  Google Scholar 

  • Ribeiro DD, Lijfering WM, Barreto SM, Rosendaal FR, Rezende SM (2012) Epidemiology of recurrent venous thrombosis. Braz J Med Biol Res 45:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rydz N, Swystun LL, Notley C, Paterson AD, Riches JJ, Sponagle K, Boonyawat B, Montgomery RR, James PD, Lillicrap D (2013) The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood 121:5228–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadler JE (1998) Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67:395–424

    Article  CAS  PubMed  Google Scholar 

  • Sherman PW, Morton ML (1984) Demography of Belding’s Ground Squirrels. Ecology 65:1617–1628

    Article  Google Scholar 

  • Smith DE, Lewis YS, Svihla G (1954) Prolongation of clotting time in the dormant bat (Myotis lucifugus). Experientia 10:218

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen P, Lehto E (1952) Prolongation of clotting time in hibernation. Experientia 8:65

    Article  CAS  PubMed  Google Scholar 

  • Svihla A, Bowman H, Pearson R (1952a) Prolongation of blood clotting time in the dormant hamster. Science 115:272

    Article  CAS  PubMed  Google Scholar 

  • Svihla A, Bowman H, Ritenour R (1952b) Relation of prothrombin to the prolongation of clotting time in aestivating ground squirrels. Science 115:306–307

    Article  CAS  PubMed  Google Scholar 

  • Svihla A, Bowman H, Ritenour R (1953) Stimuli and their effects on awakening of dormant ground squirrels. Am J Physiol 172:681–683

    CAS  PubMed  Google Scholar 

  • Sweeney JD, Novak EK, Reddington M, Takeuchi KH, Swank RT (1990) The RIIIS/J inbred mouse strain as a model for von Willebrand disease. Blood 76:2258–2265

    CAS  PubMed  Google Scholar 

  • von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Kollnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209:819–835

    Article  Google Scholar 

  • Wagner DD, Frenette PS (2008) The vessel wall and its interactions. Blood 111:5271–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss HJ, Sussman II, Hoyer LW (1977) Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand’s disease. J Clin Invest 60:390–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatzman ML (1984) Renal and cardiovascular effects of hibernation and hypothermia. Cryobiology 21:593–614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Amy Cooper, for her care of the ground squirrels and surgical expertise. We thank Dana Vaughan for helping us establish our breeding colony of ground squirrels. J. Evan Sadler and Alisa Wolberg provided critical review of the paper. Jeffrey Wren, Brian Kleinschmidt, and Elizabeth Klatt assisted with the VWF immunoblots. This work was supported by grants from the NIH (1R15HL093680, to S.T.C. and 1K08HL102260 to V.H.F), UW-System WiTAG (to J.A.B.), and an UW-La Crosse faculty development grant to S.T.C. B.M.K. and S.S. received a UW-La Crosse Dean’s Distinguished Undergraduate Summer fellowship. J.A.B. received an NSF-REU summer fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Cooper.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Communicated by H.V. Carey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

360_2015_941_MOESM1_ESM.tif

Supplemental Fig. 1. Sections of brain from ground squirrels. Sections were fixed, paraffin embedded, and 4 µm sections made using a microtome. Panels A and D show creases that are artifacts of sectioning. Slides were stained with hematoxylin and eosin, mounted and images taken on a Nikon Eclipse 80i microscope and DS-Ri1 camera using 10X and 40X objectives. A and E are from a July non-hibernating squirrel, B and F are from a January torpid animal, C and G are from a January IBA animal, D and H are from a spring animal 2 h post-arousal. The blood that is present in the vessels is a feature of port-mortem coagulation, rather than thrombosis/embolism since no organized fibrin networks can be found (TIFF 2836 kb)

360_2015_941_MOESM2_ESM.tif

Supplemental Fig. 2. Sections of lung from ground squirrels. Sections were fixed, paraffin embedded, and 4 µm sections made using a microtome. Slides were stained with hematoxylin and eosin, mounted and images taken on a Nikon Eclipse 80i microscope and DS-Ri1 camera using 10X and 40X objectives. A and E are from a July non-hibernating squirrel, B and F are from a January torpid animal, C and G are from a January IBA animal, D and H are from a spring animal 2 h post-arousal. The blood that is present in the vessels is a feature of port-mortem coagulation, rather than thrombosis/embolism since no organized fibrin networks can be found (TIFF 3139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, S., Sell, S., Nelson, L. et al. Von Willebrand factor is reversibly decreased during torpor in 13-lined ground squirrels. J Comp Physiol B 186, 131–139 (2016). https://doi.org/10.1007/s00360-015-0941-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0941-5

Keywords

Navigation