Skip to main content
Log in

Calcium response of KCl-excited populations of ventricular myocytes from the European sea bass (Dicentrarchus labrax): a promising approach to integrate cell-to-cell heterogeneity in studying the cellular basis of fish cardiac performance

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation–contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca2+ response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 °C and changes in intracellular calcium concentration ([Ca2+]i) following KCl stimulation were measured using Fura-2, at 12 or 22 °C-test. The increase in [Ca2+]i resulted primarily from extracellular Ca2+ entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca2+ response was observed between 12- and 22 °C-acclimated fish. In particular, a greater increase in [Ca2+]i at a high level of adrenaline was observed in 22 °C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes’ capacity for environmental adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aho E, Vornanen M (1998) Ca2+-ATPase activity and Ca2+ uptake by sarcoplasmic reticulum in fish heart: effects of thermal acclimation. J Exp Biol 201:525–532

    CAS  PubMed  Google Scholar 

  • Aho E, Vornanen M (1999) Contractile properties of atrial and ventricular myocardium of the heart of rainbow trout Oncorhynchus mykiss: effects of thermal acclimation. J Exp Biol 202:2663–2677

    PubMed  Google Scholar 

  • Altschuler SJ, Wu LF (2010) Cellular heterogeneity: when do differences make a difference? Cell 141:559–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angelone T, Filice E, Quintieri AM, Imbrogno S, Recchia A, Pulerà E, Mannarino C, Pellegrino D, Cerra MC (2008) Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol Oxf Engl 193:229–239

    Article  CAS  Google Scholar 

  • Anttila K, Jorgensen SM, Casselman MT, Timmerhaus G, Farrell AP, Takle H (2014) Association between swimming performance, cardiorespiratory morphometry, and thermal tolerance in Atlantic salmon (Salmo sala L.). Front Mar Sci 1:76

    Article  Google Scholar 

  • Bennett AF (1987) Interindividual variability: an underutilized resource. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New directions in ecological physiology. Cambridge University Press, Cambridege, pp 147–169

    Google Scholar 

  • Bowler K, Tirri R (1990) Temperature dependence of the heart isolated from the cold or warm acclimated perch (Perca fluviatilis). Comp Biochem Physiol A Physiol 96:177–180

    Article  Google Scholar 

  • Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614

    Article  CAS  PubMed  Google Scholar 

  • Bruton JD, Cheng AJ, Westerblad H (2012) Methods to detect Ca2+ in living cells. In: Islam MS (ed) Calcium Signaling. Adv Exp Med Biol, vol. 740. pp 27–43

  • Castro V, Grisdale-Helland B, Helland SJ, Torgersen J, Kristensen T, Claireaux G, Farrell AP, Takle H (2013) Cardiac molecular-acclimation mechanisms in response to swimming-induced exercice in Atlantic salmon. PLoS ONE 8:e55056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatelier A, McKenzie DJ, Prinet A, Galois R, Robin J, Zambonino J, Claireaux G (2006) Associations between tissue fatty acid composition and physiological traits of performance and metabolism in the seabass (Dicentrarchus labrax). J Exp Biol 209:3429–3439

    Article  CAS  PubMed  Google Scholar 

  • Claireaux G, Lagardère J-P (1999) Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J Sea Res 42:157–168

    Article  CAS  Google Scholar 

  • Claireaux G, McKenzie DJ, Genge AG, Chatelier A, Aubin J, Farrell AP (2005) Linking swimming performance, cardiac pumping ability and cardiac anatomy in rainbow trout. J Exp Biol 208:1775–1784

    Article  PubMed  Google Scholar 

  • Claireaux G, Theron M, Prineau M, Dussauze M, Merlin FX, Le Floch S (2013) Effects of oil exposure and dispersant use upon environmental adaptation performance and fitness in the European sea bass, Dicentrarchus labrax. Aquat Toxicol 130–131:160–170

    Article  PubMed  Google Scholar 

  • Cros C, Sallé L, Warren DE, Shiels HA, Brette F (2014) The calcium stored in the sarcoplasmic reticulum acts as a safety mechanism in rainbow trout heart. Am J Physiol Integr Comp Physiol 307:R1493–R1501

    Article  CAS  Google Scholar 

  • Crozier LG, Hutchings JA (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Virgilio F, Milani D, Leon A, Meldolesi J, Pozzan T (1987) Voltage-dependent activation and inactivation of calcium channels in PC12 cells. Correlation with neurotransmitter release. J Biol Chem 262:9189–9195

    PubMed  Google Scholar 

  • Doney SC (2010) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–1516

    Article  CAS  PubMed  Google Scholar 

  • Dupont-Prinet A, Chatain B, Grima L, Vandeputte M, Claireaux G, McKenzie DJ (2010) Physiological mechanisms underlying a trade-off between growth rate and tolerance of feed deprivation in the European sea bass (Dicentrarchus labrax). J Exp Biol 213:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Farrell AP, Gamperl AK, Hicks JMT, Shiels HA, Jain KE (1996) Maximum cardiac performance of rainbow trout (Oncorhynchus mykiss) at temperatures approaching their upper lethal limit. J Exp Biol 199:663–672

    PubMed  Google Scholar 

  • Farrell AP, Axelsson M, Altimiras J, Sandblom E, Claireaux G (2007) Maximum cardiac performance and adrenergic sensitivity of the sea bass Dicentrarchus labrax at high temperatures. J Exp Biol 210:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Farrell AP, Eliason EJ, Sandblom E, Clark TD (2009) Fish cardiorespiratory physiology in an era of climate change. Can J Zool 87:835–851

    Article  CAS  Google Scholar 

  • Franklin CE, Davie PS (1992) Myocardial power output of an isolated eel (Anguilla dieffenbachii) heart preparation in response to adrenaline. Comp Biochem Physiol Part C Comp Pharmacol 101:293–298

    Article  Google Scholar 

  • Fransen P, Van Hove CE, van Langen J, Schrijvers DM, Martinet W, De Meyer GRY, Bult H (2012) Contribution of transient and sustained calcium influx, and sensitization to depolarization-induced contractions of the intact mouse aorta. BMC Physiol 12:9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galli GLJ, Shiels HA, Brill RW (2009) Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol Biochem Zool PBZ 82:280–290

    Article  PubMed  Google Scholar 

  • Gamperl AK, Farrell AP (2004) Cardiac plasticity in fishes: environmental influences and intraspecific differences. J Exp Biol 207:2539–2550

    Article  CAS  PubMed  Google Scholar 

  • Gamperl AK, Pinder AW, Boutilier RG (1994) Effect of coronary ablation and adrenergic stimulation on in vivo cardiac performance in trout (Oncorhynchus mykiss). J Exp Biol 186:127–143

    CAS  PubMed  Google Scholar 

  • Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102:1377–1384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gauthier C, Sèze-Goismier C, Rozec B (2007) Beta 3-adrenoceptors in the cardiovascular system. Clin Hemorheol Microcirc 37:193–204

    CAS  PubMed  Google Scholar 

  • Graham MS, Farrell AP (1989) The effect of temperature acclimation and adrenaline on the performance of a perfused trout heart. Physiol Zool 62:38–61

    Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Haverinen J, Vornanen M (2004) Temperature acclimation modifies Na+ current in fish cardiac myocytes. J Exp Biol 207:2823–2833

    Article  CAS  PubMed  Google Scholar 

  • Haverinen J, Vornanen M (2009) Responses of action potential and K+ currents to temperature acclimation in fish hearts: phylogeny or thermal preferences? Physiol Biochem Zool PBZ 82:468–482

    Article  CAS  PubMed  Google Scholar 

  • Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:127–145

    Article  CAS  PubMed  Google Scholar 

  • Hove-Madsen L, Tort L (1998) L-type Ca2+ current and excitation-contraction coupling in single atrial myocytes from rainbow trout. Am J Physiol Regul Integr Comp Physiol 275:R2061–R2069

    CAS  Google Scholar 

  • Hove-Madsen L, Llach A, Tort L (2000) Na+/Ca2+-exchange activity regulates contraction and SR Ca2+ content in rainbow trout atrial myocytes. Am J Physiol Regul Integr Comp Physiol 279:R1856–R1864

    CAS  PubMed  Google Scholar 

  • Imbert-Auvray N, Mercier C, Huet V, Bois P (2013) Sarcoplasmic reticulum: a key factor in cardiac contractility of sea bass Dicentrarchus labrax and common sole Solea solea during thermal acclimations. J Comp Physiol B 183:477–489

    Article  CAS  PubMed  Google Scholar 

  • Imbrogno S, Angelone T, Adamo C, Pulerà E, Tota B, Cerra MC (2006) Beta3-adrenoceptor in the eel (Anguilla anguilla) heart: negative inotropy and NO-cGMP-dependent mechanism. J Exp Biol 209:4966–4973

    Article  CAS  PubMed  Google Scholar 

  • Keen JE, Vianzon DM, Farrell AP, Tibbits GF (1993) Thermal acclimation alters both adrenergic sensitivity and adrenoceptor density in cardiac tissue of rainbow trout. J Exp Biol 181:27–48

    CAS  Google Scholar 

  • Keen JE, Vianzon D-M, Farrell AP, Tibbits GF (1994) Effect of temperature and temperature acclimation on the ryanodine sensitivity of the trout myocardium. J Comp Physiol B 164:438–443

    Article  CAS  Google Scholar 

  • Klaiman JM, Pyle WG, Gillis TE (2014) Cold acclimation increases cardiac myofilament function and ventricular pressure generation in trout. J Exp Biol 217:4132–4140

    Article  PubMed  Google Scholar 

  • Korajoki H, Vornanen M (2013) Temperature dependence of sarco(endo)plasmic reticulum Ca2+ ATPase expression in fish hearts. J Comp Physiol B 183:467–476

    Article  CAS  PubMed  Google Scholar 

  • Lague SL, Speers-Roesch B, Richards JG, Farrell AP (2012) Exceptional cardiac anoxia tolerance in tilapia (Oreochromis hybrid). J Exp Biol 215:1354–1365

    Article  PubMed  Google Scholar 

  • Langton PD, Huddart H (1988) Voltage and time dependency of calcium mediated phasic and tonic responses in rat vas deferens smooth muscle–the effect of some calcium agonist and antagonist agents. Gen Pharmacol 19:775–787

    Article  CAS  PubMed  Google Scholar 

  • Larsson D, Larsson B, Lundgren T, Sundell K (1999) The effect of pH and temperature on the dissociation constant for fura-2 and their effects on [Ca2+]i in enterocytes from a poikilothermic animal, Atlantic cod (Gadus morhua). Anal Biochem 273:60–65

    Article  CAS  PubMed  Google Scholar 

  • Loewer A, Lahav G (2011) We’re all individuals: causes and consequences of non-genetic heterogeneity in mammalian cells. Curr Opin Genet Dev 21:753–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lurman GJ, Petersen LH, Gamperl AK (2012) In situ cardiac performance of Atlantic cod (Gadus morhua) at cold temperatures: long-term acclimation, acute thermal challenge and the role of adrenaline. J Exp Biol 215:4006–4014

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S (1995) A pharmacological analysis of calcium channels involved in phasic and tonic responses of the guinea-pig ureter to high potassium. J Auton Pharmacol 15:55–64

    Article  CAS  PubMed  Google Scholar 

  • Mangel M, Stamps J (2001) Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evol Ecol Res 3:583–593

    Google Scholar 

  • Marras S, Claireaux G, McKenzie DJ, Nelson JA (2010) Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax. J Exp Biol 213:26–32

    Article  CAS  PubMed  Google Scholar 

  • McClelland GB, Dalziel AG, Fragoso NM, Moyes CD (2005) Muscle remodeling in relation to blood supply: implications for seasonal changes in mitochondrial enzymes. J Exp Biol 208:515–522

    Article  CAS  PubMed  Google Scholar 

  • Mendonça PC, Gamperl AK (2009) Nervous and humoral control of cardiac performance in the winter flounder (Pleuronectes americanus). J Exp Biol 212:934–944

    Article  PubMed  Google Scholar 

  • Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL et al (2012) Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 59:1979–1987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rathi SS, Saini HK, Xu Y-J, Dhalla NS (2004) Mechanisms of low Na+-induced increase in intracellular calcium in KCl-depolarized rat cardiomyocytes. Mol Cell Biochem 263:151–162

    Article  CAS  PubMed  Google Scholar 

  • Roessig JM, Woodley CM, Cech JJ Jr, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275

    Article  Google Scholar 

  • Roze T, Christen F, Amérand A, Claireaux G (2013) Trade-off between thermal sensitivity, hypoxia tolerance and growth in fish. J Therm Biol 38:98–106

    Article  Google Scholar 

  • Shiels HA, Farrell AP (1997) The effect of temperature and adrenaline on the relative importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in isolated ventricular trabeculae from rainbow trout. J Exp Biol 200:1607–1621

    CAS  PubMed  Google Scholar 

  • Shiels HA, Vornanen M, Farrell AP (2002) Effects of temperature on intracellular Ca2+ in trout atrial myocytes. J Exp Biol 205:3641–3650

    CAS  PubMed  Google Scholar 

  • Stepien O, Marche P (2000) Amlodipine inhibits thapsigargin-sensitive Ca2+ stores in thrombin-stimulated vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 279:H1220–H1227

    CAS  PubMed  Google Scholar 

  • Strosberg AD (1997) Structure and function of the beta 3-adrenergic receptor. Annu Rev Pharmacol Toxicol 37:421–450

    Article  CAS  PubMed  Google Scholar 

  • Tibbits GF, Moyes CD, Hove-Madsen L (1992) Excitation-contraction coupling in the teleost heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish Physiology. Academic Press, USA, pp 267–296

    Google Scholar 

  • Tiitu V, Vornanen M (2002) Regulation of cardiac contractility in a cold stenothermal fish, the burbot Lota lota L. J Exp Biol 205:1597–1606

    CAS  PubMed  Google Scholar 

  • Tiitu V, Vornanen M (2003) Ryanodine and dihydropyridine receptor binding in ventricular cardiac muscle of fish with different temperature preferences. J Comp Physiol B 173:285–291

    Article  CAS  PubMed  Google Scholar 

  • Vandamm JP, Marras S, Claireaux G, Handelsman CA, Nelson JA (2012) Acceleration performance of individual European sea bass Dicentrarchus labrax measured with a sprint performance chamber: comparison with high-speed cinematography and correlates with ecological performance. Physiol Biochem Zool 85:704–717

    Article  PubMed  Google Scholar 

  • Vela J, Pérez-Millán MI, Becu-Villalobos D, Díaz-Torga G (2007) Different kinases regulate activation of voltage-dependent calcium channels by depolarization in GH3 cells. Am J Physiol Cell Physiol 293:C951–C959

    Article  CAS  PubMed  Google Scholar 

  • Vornanen M (1997) Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. Am J Physiol 272:R1432–R1440

    CAS  PubMed  Google Scholar 

  • Vornanen M (1998) L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201:533–547

    CAS  PubMed  Google Scholar 

  • Vornanen M (1999) Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx. J Exp Biol 202:1763–1775

    CAS  PubMed  Google Scholar 

  • Vornanen M, Shiels HA, Farrell AP (2002a) Plasticity of excitation-contraction coupling in fish cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 132:827–846

    Article  PubMed  Google Scholar 

  • Vornanen M, Ryökkynen A, Nurmi A (2002b) Temperature-dependent expression of sarcolemmal K+ currents in rainbow trout atrial and ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 282:R1191–R1199

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Ollivier.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollivier, H., Marchant, J., Le Bayon, N. et al. Calcium response of KCl-excited populations of ventricular myocytes from the European sea bass (Dicentrarchus labrax): a promising approach to integrate cell-to-cell heterogeneity in studying the cellular basis of fish cardiac performance. J Comp Physiol B 185, 755–765 (2015). https://doi.org/10.1007/s00360-015-0924-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0924-6

Keywords

Navigation